
telos I2C Studio 5.15
User Manual

telos Systementwicklung GmbH
Kaiser-Wilhelm-Strasse 93, 20355 Hamburg /Germany
Phone: +49 (0)40 450 173 61
Mail: tsupport@telos.de
Web: www.telos.info

October 6, 2020

Document Revision: 8960

Contents

3

1 Terms

Combined Message A sequence of submessages where only the last submessage is
terminated by a STOP condition

telos Connii Interface USB I2C interface for master operations.
telos Connii MM Interface USB I2C interface for master and limited tracer operations. Suc-

cessor of the telos Connii interface.
telos Connii MM 2.0 Interface USB I2C interface for master and limited tracer operations. Suc-

cessor of the telos Connii MM interface.
GUI Graphical User Interface
I2C Interface Generic term for telos Tracii XL 2.0, telos Tracii XL, telos Connii

MM 2.0, telos Connii MM, and telos Connii interfaces.
Message An I2C transfer that begins with a START condition and ends

with a STOP condition. A message consists of one or more sub-
messages without a STOP condition in-between.

Submessage An I2C transfer that begins with a START condition and ends
with a STOP condition or with a subsequent START condition.

telos Installation CD CD which is delivered with the product. It contains all software
and documentation which is needed to use the product.

telos Tracii XL Interface USB I2C interface for master, tracer, and oscilloscope operations.
telos Tracii XL 2.0 Interface USB I2C interface for master, tracer, and oscilloscope operations.

Successor of the telos Tracii XL interface.
USB I2C Interface I2C interface which is connected to the PC via the Universal Se-

rial Bus (USB). (The term USB I2C interface applies only to telos
products.)

5

2 Introduction

The following sections are an introduction to the application I2C Studio.

2.1 Disclaimer

This product is not designed for use in life support appliances, devices or systems where
malfunction of this product can reasonably be expected to result in personal injury.

Customers using or selling this product for use in such applications do so at their own risk
and agree to fully indemnify telos for any damages resulting from such improper use or sale.

2.2 Product Outline and Purpose

telos I2C Studio is an easy-to-use integrated I2C development environment to access all fea-
tures of the I2C interfaces in the telos product chain.

It supports usage of the USB clients telos Tracii XL 2.0, telos Tracii XL, telos Connii MM 2.0,
telos Connii MM, and telos Connii.

The installation package contains the following components: I2C Studio, I2C Framework,
and I2C Flasher.

2.2.1 I2C Studio

I2C Studio is the GUI to access all features of the I2C interfaces in the telos product chain.
The main functionalities offered by I2C Studio are master, tracer, and negative tester. An

additional feature of the tracer is an optional oscilloscope capability to give developers the
possibility for watching the analog signal form in parallel to the traced I2C data. I2C Studio
also supports scripting in C# for advanced users.

The I2C Studio has integrated an I2C slave, which works as RAM emulation and is only
usable with telos Tracii XL 2.0 and telos Tracii XL.

Furthermore, it offers tools for JEDEC SPD RAM support. See chapter ?? for more details.
The telos I2C Studio allows accessing multiple functionalities on a referenced I2C interface

at the same time. This means that users can access one I2C interface e.g. as master and tracer
at the same time. Thus, it is possible to send and trace I2C messages within one application
simultaneously.

The application offers a modern graphical user interface based on the Microsoft .NET tech-
nology, which is highly configurable due to the usage of workspaces. Different view modes
allow analyzing the traced I2C data regarding different aspects.

A special view model is part of the tracer and allows watching the data on datasheet level. It
is called IRD. Instead of working with addresses, offsets and byte values the user is provided
with a comprehensive view of device registers, which are given by the names used in the
datasheets.

7

2 Introduction

2.2.2 I2C Framework

The I2C Framework consists of application programming interfaces (APIs) to communicate
with telos I2C products within customer applications. The following APIs are part of the
framework:

• .NET API

• C++ API

• C API

• Java API

• Labview API

• URT/URD API

2.2.3 I2C Flasher

The I2C flasher is an industrial solution for EEPROM and flash programming needs. It sup-
ports a bunch of I2C memories from different vendors as Atmel, Catalyst, Fairchild, ISSI,
Microchip, NXP (Philips), Samsung and ST Microelectronics.

8

3 Installation

The following sections describe the installation of the hardware and the software.

3.1 System Prerequisites

The following preconditions are required for a computer system to install and use I2C Studio:

Memory Minimum 512 MB RAM, 1 GB are recommended
Processor 1 GHz
OS Platforms Windows 7 (x86 & x64)

Windows 8 (x86 & x64)
Windows 8.1 (x86 & x64)
Windows 10 (x86 & x64)

Browser Internet Explorer, version 8 or higher
Software Packages Microsoft .NET-Framework 4.0

3.2 Software Installation

To start the installation of I2C Studio execute one of the following setup packages, which can
be found on the telos setup CD:

• .\software\x86\i2cstudio setup x86.exe (x86)

• .\software\x64\i2cstudio setup x64.exe (x64)

Please note that administrator rights are required to install the software. The installation
wizard leads the user through the installation process. Besides the main application the instal-
lation routine also installs the USB device driver for the telos I2C interfaces to the installation
directory.

3.3 Driver Installation

After I2C Studio is installed properly, Microsoft Windows has drivers available for all telos
I2C USB interfaces.

Now, if a new telos USB I2C interface is plugged into an USB port, the Microsoft Windows
hardware wizard comes up and guides the user through a fresh driver installation for this
specific device.

The wizard asks whether it should install the driver automatically or manually. Please
choose the automatic installation. Now the wizard updates the driver installation with the
newly found device. It is ready to use, then.

9

3 Installation

Figure 3.1: I2C Studio Install Wizard

Figure 3.2: New Hardware Wizard

Note: Microsoft Windows also starts the driver installation process, if a telos USB
I2C device has formerly been in use on the system but the USB port has
changed.

3.4 Mac OS X

There is no native Mac OS X application for interfacing the telos I2C tools. However, telos I2C
Studio has been tested to perform well in a virtual machine running Windows 7.

10

3.4 Mac OS X

What you need:

• An Intel Mac built 2010 or later - earlier models may work but lack performance. I2C
Studio will not run on Power PC.

• VM Fusion virtualization software available from:

http://www.vmware.com

• telos I2C Studio

• Microsoft Windows 7 (later versions may work too)

Figure 3.3: Mac OS X

Please follow these steps to install your telos I2C interface:

1. Install VM Fusion on your Mac.

2. Install MS windows by either doing a fresh install or by using the VMWare migration
assistant to move your existing installation over to the Mac.

3. Please uninstall telos I2C studio, if you migrated an existing windows installation,
which had this software installed.

4. Do not connect any I2C equipment yet.

5. Run the telos I2C Studio setup wizard. You should see the drivers being installed and
you should be prompted to confirm the driver installation.

6. After the telos I2C Studio setup wizard has completed, connect your telos I2C interface
to the USB port of your Mac while Windows is running in VMWare fusion. You should
see the dialog shown in figure ??.

11

http://www.vmware.com

3 Installation

7. The dialog prompts you in your localized language to chose between connecting the
equipment to the Mac or to your virtual Windows machine. Please chose to connect to
the Windows machine and tick the checkbox to make this selection permanent.

8. You are done, telos I2C studio should now interact properly with your hardware.

You may use the shared folder facility of VM Fusion to directly store log files created by
telos I2C Studio to your native Mac file system. Folder shares are usually placed on your
desktop by VMWare.

12

4 Getting Started

4.1 I2C Studio Overview

Starting telos I2C Studio the first time the user is confronted with a splash screen for a while.
Depending on the system speed, it takes a moment until I2C Studio opens up with a blank
workspace.

Figure 4.1: I2C Studio Splash Screen

13

4 Getting Started

Figure 4.2: I2C Studio after Startup

When starting I2C Studio the first time a nearly blank Workspace on the left side and a
so-called start page on the right side is presented.

The applications window top hosts a menu bar and a toolbar with some buttons beneath.
Most of the toolbar buttons and parts of the menu bar selections are greyed out at the very
first start simply because no function window has been opened in I2C Studio so far.

In this state another component of the application is nearly empty too. The status bar, which
resides at the bottom of the application window, is showing only a link to the telos homepage
as its default setting.

4.2 Menu and Toolbar

Figure 4.3: I2C Studio Menue and Toolbar after start

The menu allows the access to most of the I2C Studio functions. To ease the access, some of
these functions, which are used regularly, have a shortcut by button in the toolbar too.

14

4.2 Menu and Toolbar

The menu has a permanent and a dynamic part. Thus some menu items are shown always,
while other items are shown only, if the appropriate I2C Interface (Master / Tracer / Negative
Tester) is selected in the workspace.

4.2.1 Permanent Menu

As displayed in figure ??, the following menu items are displayed always:

File All file depending activities can be found here. For example a new function window
(see section ?? for more details) can be created, stored to disk, loaded from disk etc. The
same can be done with the workspace. Additional to that, the License Manager (see
chapter ?? for more details) can be found here, to check or renew the service contract of
the appropriate telos I2C Interface.

Edit Descriptions in the Workspace can be copied and pasted.

Access The remote access can be executed here. See more details in section ??.

Tools Some helpful tools are provided here. See chapter ?? for more details.

Language The telos I2C Studio provides all controls in English and German language. Thus
the user can select the preferred language. After selection a restart of the I2C Studio is
necessary. If started the first time, I2C Studio will select the language from the culture
settings of the computer. Thus if the computer has already German selected as preferred
language, I2C Studio will select German too. Otherwise the English setup is used.

Help All necessary information about I2C Studio like content (user manual), I2C-bus helpfile,
online manual, contact to the technical support and other information about the I2C
Studio are available here.

4.2.2 Dynamic Menu

As mentioned above, the menu provides some dynamic entries. Therefore the menu is changed
according to the created and selected device in the Workspace. If the Master is created and se-
lected in the Workspace, the permanent menu gets an additional entry called ’Master’. Thus
all Master depending settings can be accessed here. See more details about the Master in
chapter ??.

Figure 4.4: I2C Studio Menu - Master selected

If the Tracer is created and selected in the Workspace, the permanent menu gets an addi-
tional entry called ’Tracer’. If the I2C Interface supports the additional feature of an ADC, the
menu gets another additional entry called ’ADC’. See more details about the Tracer in chapter
?? and about the ADC in section ??.

15

4 Getting Started

Figure 4.5: I2C Studio Menu - Tracer selected

If a Negative Tester is created and selected in the Workspace, the permanent menu is ex-
tended by the item ’Negative Tester’. See more details about the Negative Tester in chapter
??.

Figure 4.6: I2C Studio Menu - Negative Tester selected

4.2.3 Toolbar

As mentioned before, the Toolbar provides some buttons for frequently used menu functions.
Therefore the Toolbar is separated in 5 sections.

Figure 4.7: I2C Studio Toolbar

The first section consists of function support, which can be found in the file menu (New,
Open, Save-All).

The second section provides a start and a stop button. These buttons can be used dynam-
ically, depending on the selected interface in the Workspace. Thus the start button can start
a Tracer, Master or Negative Tester, according to the pre-selected interface. The stop button
can be used to stop a running Tracer or Negative Tester, while the Master typically stops
automatically after execution.

The start and stop of the ADC function (see section ??) can be performed in the third section
of the Toolbar. The buttons are only accessible, if the connected I2C Tracer hardware device
have a valid ADC license installed.

The clear all button in the fourth section can be used to clear all traced data in the Tracer.
Therefore the Tracer must be started and stopped before. Otherwise this function is not avail-
able.

The slave button in the fifth section is a shortcut to the menu item Tools|I2C Memory Slave.

4.3 Status Bar

As mentioned above, the status bar can be found at the bottom of the main I2C Studio win-
dow. As also mentioned, the status bar shows the link to the telos website after startup only
(see figure ??).

If an I2C interface is created in the Workspace, the status bar shows some useful hardware
related information, depending on the current selected device in the Workspace.

16

4.4 Function Windows

Figure 4.8: I2C Studio Status Bar after start

Figure ?? shows the information of the Dummy-Master, while figure ?? gives some infor-
mation about the Dummy-Tracer.

Figure 4.9: I2C Studio Status Bar - Master

Figure 4.10: I2C Studio Status Bar - Tracer

In case a real hardware is used to create an I2C Interface in the Workspace, the voltage can
be selected by user. If no external voltage device is driving the I2C-bus, the internal hardware
voltage supply must be set by user. Therefore, the voltage in the status bar is displayed in red
(see figure ??), until a voltage is set in the appropriate hardware menu like Tracer|Hardware
Options. As a shortcut, the user can also click directly on the (red marked) voltage field of the
status bar to open the appropriate hardware dialog.

Figure 4.11: I2C Studio Status Bar - Tracer with no power

4.4 Function Windows

To start working with I2C Studio it is necessary to create a function window. I2C Studio
knows several different types of function windows: master, tracer, negative tester, and script.
Not all I2C interfaces support all types of function windows.

Master Tracer Negative Tester Script
telos Tracii XL 2.0 X X - X
telos Tracii XL X X - X
telos Connii MM 2.0 X X - X
telos Connii MM X X - X
telos Connii X - - X
telos I2C Negative Tester - - X X

To create a new function window simply press on the New button. This will open the dialog
shown in figure ??.

17

4 Getting Started

Figure 4.12: New Dialog

This dialog contains a tree with three levels. The first level contains the PC, to which the I2C
interface is connected. The second level contains the I2C interface. In this example we have
two PCs. One real I2C interface is connected to the local PC: a telos Tracii XL with the serial
number 0xD4D8. A telos Connii with the serial number 0x1EA5 is connected to the remote PC
with the DNS name dyn16-113.telos.de (IP address 194.173.126.113, IP port 3000). The third
level of the tree contains the function window types supported by each I2C interface.

To open e.g. a tracer function window on the telos Tracii XL connected to the local PC
simply double click on the Tracer line beneath telos Tracii XL. After double clicking a new
function window is created. It gets displayed on the right side of I2C Studio.

To close a function window click on the X button on the upper right side of the window.

4.5 Workspace

After creating a new function window an entry is added to the tree of documents in the
workspace window on the left side of I2C Studio, see figure ??.

Figure 4.13: Workspace

The tree contains four folders, one for each type of function window supported by I2C
Studio. In these folders I2C Studio stores links to opened and closed function windows.

The icons in the tree have got the following meaning:

18

4.6 I2C Scheduler

Folder closed

Folder opened

Function window is closed

Function window is closed and cannot be opened

Function window is opened

Function window is opened (stopped state)

Function window is opened (running state)

The workspace, which is pictured in the example, contains one open function window. It
is a function window for the tracer functionality of a telos Tracii XL interface. The tracer is in
the stopped state, which can be determined by the icon.

When the user moves the cursor of the mouse over a document in the workspace some
information about the document are shown within a tooltip. By double clicking on a closed
document, it is possible to open the document.

According to the state of the function window the context menu of a document offers dif-
ferent options:

Open/Close Open or close the appropriate function window file.

Reconnect Associate a new I2C interface with the function window.

Remove From Disk Delete the function window file from disk and its link from the workspace.

Remove From Workspace Delete the function window from Workspace. The file is still
available on disk.

Rename Change the name of the function window file.

It is possible to create a new function window not only by using the New button. Another
way leads to the context menu of the workspace. Therefore the user simply opens the context
menu on one of the folder icons in the tree of the workspace. To create e.g. a master function
window, the user opens the context menu on the Master folder and selects New.

The configuration of the workspace is stored in files with the prefix *.i2cw. Workspace
files can be created, opened and stored using the items in the File|Workspace menu.

4.6 I2C Scheduler

Figure ?? gives an overview of the I2C Framework and I2C Studio. One central component
of the I2C Framework is the I2C scheduler. This component connects the I2C interfaces with
the I2C APIs. It is implemented as MS Windows service, which gets started automatically at
startup of the PC.

The I2C scheduler acts like a multiplexer/demultiplexer. It makes it possible to communi-
cate simultaneously from several programs with the same I2C interface.

The communication between the I2C scheduler and the I2C APIs uses a TCP/IP channel.
Due to this fact it is possible to communicate not only with I2C interface connected to the

19

4 Getting Started

I2C Bus 1 I2C Bus 2

I2C Scheduler

C++ API

.NET API Java APIURT/URD APII2C Flasher

I2C Studio Labview API

Tracii XL

Driver

Tracii XL

Driver

TV Set

Figure 4.14: I2C Framework

local PC but also with I2C interfaces connected to other PCs in the LAN. This can be useful
e.g. for remote diagnostics.

I2C Studio offers a dialog to configure the I2C scheduler running on the local PC and the
connection to I2C schedulers running on other PCs. This dialog can be opened by selecting
Access|Remote I2C Access in the menu.

The dialog can be divided into two major parts. The upper part serves the configuration
of the local I2C scheduler. The Remote Access check box configures whether the local I2C
scheduler should accept connection from other PCs in the LAN. The Port input configures
the TCP/IP port, on which the I2C scheduler is listing for incoming connections. To prevent
a misusage of the local I2C scheduler, it is important to set a secure password.

The second part of the dialog serves the configuration of the connections to I2C schedulers
running on remote PCs. To connect to a remote I2C scheduler three parameters are needed:
TCP/IP address (DNS name or IP address), TCP/IP port, and password.

In the example, which is shown in figure ?? two remote I2C schedulers have been specified.
The Status column of the table shows the current status of the connection. In the example
the connection to the first I2C scheduler has been established successfully. The second I2C

20

4.7 Hardware Options

Figure 4.15: Remote Access

scheduler cannot be reached by I2C Studio. By selecting one line in the table it is possible to
get a detailed description of the reason, why a remote I2C scheduler cannot be contacted.

4.7 Hardware Options

The I2C interfaces offer several hardware and electrical parameters, which can be configured
by the software.

Both the master and the tracer function window offer a dialog to configure these parame-
ters. In the master function window this dialog can be opened using the Master|Hardware
Options item in the menu. The same dialog can be opened in the tracer function window
using Tracer|Hardware Options.

Trigger Conditions: Output Testpin Some I2C interfaces provide an output testpin that can
signal certain events. E.g. the I2C interface can trigger this testpin, when it detects a
START condition on the I2C-bus.

Termination - Resistor Dependent on the bus load the passive termination resistor of the
I2C-bus can be adjusted to manipulate the signals slew rate. For long cables and/or

21

4 Getting Started

Figure 4.16: Hardware Options

high bitrates it is important to have a sufficient low termination of the I2C-bus.

Termination - Current Source An alternative to control the signals slew rate is to adjust the
active current source of the I2C interface. This hardware feature provides a constant
current and is therefore independent from voltage deviations, which otherwise have
an impact on the current through a passive termination resistor. Therefore the active
current source is a more sophisticated possibility to control the rising edges of the I2C-
signals. It generates steeper edges with less current than the passive termination.

Remark: Please note, that this feature is only available for telos Tracii XL 2.0 manufac-
tured 2016 or later.

Termination (Auto Detect) Allows to automatically find the optimal termination for the spec-
ified bitrate.

Voltage Threshold The voltage thresholds are parameters that define the interpretation of
the analog signals. If an I2C-bus signal is high and falls below the low level threshold, it
is treated as a high/low transition. If an I2C-bus signal is low and rises above the high
level threshold, it is treated as a low/high transition. The default values for an I2C-bus
conforming to the I2C specification is a setting of 30%/70%.

Bus Type I2C Studio supports I2C-buses (I2C) and SMBuses (SMB).

I2C Vcc Supply All I2C interfaces have got a I2C Vcc supply pin on their I2C connector. The
level on this pin defines the high level of the I2C-bus. Some newer I2C interfaces can
generate this voltage internally. The internal supply can be configured using this option.

22

4.8 I2C Interface ”Dummy”

4.8 I2C Interface ”Dummy”

The I2C scheduler does not only communicate with I2C interfaces connected to the local PC,
but also implements a virtual I2C interface. This virtual I2C interface can be used e.g. to eval-
uate I2C Studio without real hardware connected to the PC. Or it can be useful for developing
software based on the I2C Framework.

Connected to this virtual I2C interface are five virtual I2C devices:

Slave Address Device
0x0B Smart Battery: Battery
0x0C Smart Battery: Charger
0x29 Analog Devices ADM1021A
0x50 256 bytes RAM
0x68 Dallas DS1307

Some virtual communication between a virtual I2C master and these devices is generated
automatically. But it is also possible to communicate with these device manually using e.g.
the master function window.

23

4 Getting Started

4.9 First Steps Example

To get familiar with the handling of the I2C Studio, the following steps are defined to show
an easy example.

• Start the I2C Studio. If no workspace was stored before, an empty workspace will be
opened (see figure ??).

Figure 4.17: I2C Studio with empty Workspace

• Press the New button in the Toolbar or select the File|New menu item to open the New
Dialog (figure ??)

Figure 4.18: New Dialog

24

4.9 First Steps Example

• Select for the hardware (telos Tracii XL 2.0 or telos Connii) the desired Mode:

– Master (continue in chapter ??)

– Negative Tester (continue in chapter ??)

– Tracer (continue in chapter ??)

Finally click on the OK button. The Example continues in the chapter of the list above.

To learn more about the I2C Studio features, please read the following chapters.

25

5 Tracer

5.1 Introduction

One of the function window types, which can be opened in I2C Studio is the tracer window.
In contrast to the master window this type of window does not work actively on the I2C-bus.
Instead it records the traffic between other I2C masters and slaves on the I2C-bus passively.

Recording the data of an I2C-bus can be useful in different scenarios. E.g. there is an exist-
ing system, which does not work as expected. The tracer can then be used as a debugging tool
to find e.g. wrong or illegal I2C messages. Another scenario could be the reverse engineering
of an existing system, to make e.g. an new system compatible to the existing one.

5.2 Quick Start

To open a new tracer window the developer can use the New button, the File|New menu item
or the context menu of the workspace.

Note: Not all I2C interfaces can be used as I2C tracer: some I2C interfaces cannot
be used as I2C tracer at all, other require a special license.

Figure ?? shows how I2C Studio looks like after opening a new tracer function window. A
new item has been added to the workspace. The new tracer function window is displayed on
the right side.

5.3 Views

The tracer function window is divided into different views. These views offer different inter-
pretations of the same data traced on an I2C-bus:

Time View Visualizes the data in the time domain. This can be used to detect e.g. stretching
on the I2C-bus or to measure the speed of I2C masters on the I2C-bus.

Message View Visualizes the data as a list of I2C messages. This view is useful, when only
the transferred data without detailed timing information is of interest. Using this view
it is not only possible to see the transferred data bytes, but it is also possible to get an
I2C device depended interpretation of the data.

Live View Shows the current value of all registers of the devices connected to the traced I2C-
bus.

Statistic View Contains some statistics about the transfers on the I2C-bus.

27

5 Tracer

Figure 5.1: New Tracer Window

5.4 Acquire I2C Data

Before it is possible to use any of the views it is necessary to acquire I2C data. The acquisition
can be started using the Start button or the menu item Tracer|Start. As soon as the tracer is
running the Start button gets greyed out and the Stop button gets enabled.

If there is traffic on the I2C-bus, the ”Messages” value in the status bar gets incremented pe-
riodically. This value contains the number of I2C messages traced on the I2C-bus. A message
starts with a START condition and ends with a STOP condition. This means that combined
I2C transfers consisting e.g. of two submessages will be counted as only one I2C message.

The traced I2C data gets streamed to the hard disc, so that the number of I2C messages,
which can be traced, is limited only by the space available on the hard disc containing the
Windows system directory for temporary files.

While the tracer is running most functions of the tracer function windows can be used in
parallel. E.g. it is possible to use the different views to inspect the already traced data. Some
functions can be used only while the tracer is in the stopped state.

To finish the acquisition of data the Stop button or the menu item Tracer|Stop can be used.
Restarting the tracer will not delete the already traced data. Instead the new data will be

appended to the already acquired data. The deleting of the acquired data can be requested
by using the Clear All button, which will also delete some other data, or by the menu item
Tracer|Clear.

28

5.5 Configuration

5.5 Configuration

5.5.1 Tracer Options

Some properties of the tracer function window can be modified using the options dialog of
the window. This dialog can be opened using the menu item Tracer|Tracer Options. Figure ??
shows the tracer options dialog.

Figure 5.2: Tracer Options

In some situations it is necessary to let the tracer run for hours, but only a limited number
of messages are of interest to debug a problem. For such situations I2C Studio offers the
possibility to limit the data queue to a specific size. This limit can be configured using the
slider in the ”Trace Data” group box. If the limit is reached, the oldest messages are removed.

If the ”Clear At Start” check box is set, the already captured data gets deleted when the
tracer is restarted.

Some I2C interfaces have additional digital input lines, whose state can be traced in parallel
to the I2C-bus. If the check box ”Trace Input Testpins” is set, these lines are traced.

The check box ”Auto Scroll” defines, whether the view should jump to the end of the data
automatically, when new data arrives. This can be useful especially on an I2C-bus, on which
not too many messages are transferred. If this option is enabled, I2C Studio will consume a
lot of more resources during tracing. So this option should be used with caution.

Sometimes only messages to specific I2C slaves are of interest. In such situations the I2C
address filter can be used. If it has been enabled, only messages to slaves whose I2C addresses
are marked as ”pass” get recorded. All other messages are not recorded. This means it is not
possible to make them visible again at a later time.

5.5.2 IRD & Plug-In Manager

Beside the hardware and the tracer option dialogs there is a third dialog under the Tracer
menu item: the ”IRD & Plug-In Manager” dialog.

This dialog, which can be seen in figure ??, has got three tasks:

• assign alias names to I2C addresses

29

5 Tracer

Figure 5.3: IRD & Plug-In Manager

• assign IRD or plug-in files to I2C addresses

• execute a scan for slaves connected to the I2C-bus

Using the Copy button it is possible to copy the configuration of another open function
window.

Alias Names

For a human being is it always difficult to remember which I2C devices uses which I2C ad-
dress. So to make it more convenient it is possible to assign an alias name to an I2C address.
The tracer function window will show these alias names additionally to the I2C addresses in
all places, where I2C addresses are used.

To add a new alias name simply press on the Add button. A new form will be opened
asking for the I2C address. After entering the desired I2C address, the user can simply click
somewhere outside the form. This will add the I2C address to the table and close the form.
In the table the user can click into the ”Alias” cell of the new row and enter the desired alias
name.

IRD/Plug-Ins

When debugging complex problems it is very time-consuming to compare the transferred
raw data with the data-sheets of the used ICs. That is why I2C Studio offers the I2C Register
Description (IRD) and the plug-in interface.

Using IRD or the plug-in files I2C Studio can display the raw data in an interpreted format.
This higher-level view displays the meaning of the transferred data for an IC. This means that
e.g. I2C Studio displays that ”20 ◦C” has been read from the ”External Temperature” register
of a temperature sensor.

IRD is a XML based file format, which can be used to describe the register and values of
an IC. The plug-ins can be written with any programming language supporting Microsoft’s

30

5.5 Configuration

.NET framework. I2C Studio comes along with a large number of ready to use IRD and plug-
in files. In addition the user can write its own files.

To assign an IRD or plug-in file to an I2C address, simply open the ”IRD/Plug-In” combo
box in the appropriate row of the table and choose the desired IRD or plug-in file. If there is
not already a row for the desired I2C address, use the Add button.

User written IRD and plug-in files must be copied to the following folders:

IRD <Documents>\I2C Studio\ird
Plug-In <Documents>\I2c Studio\plugins

I2C Address Scan

When working with an existing system, it is not always known, which I2C addresses are used
by the I2C slaves. To examine an I2C-bus an I2C address scan can be started by pressing the
Scan button.

The address scan tries to read data from each valid I2C address. If the read is answered,
this I2C address gets marked as to be in use.

Note: The I2C address scan does not necessarily find all I2C addresses, which are
in use. A lot of I2C devices on the market do not comply exactly to the I2C
specification. Furthermore the I2C slave can be in a busy state, while the I2C
address scan is running.

The result of the I2C address scan is shown in the first column of the table. The icons have
got the following meaning:

I2C address is in use
I2C address is not in use or no I2C address scan has been run

31

5 Tracer

5.6 Analog Mode

5.6.1 Introduction

The normal I2C tracer is a great help to debug most of the daily problems when working with
I2C-busses. In some cases the digital view of the I2C-bus gives the developer not enough
information to fix his problems.

In such situations the analog mode of the tracer comes into play.

Note: Not all I2C interfaces support the analog mode: some I2C interfaces does not
support this feature at all, other require a special license.

The analog mode works like a stand alone oscilloscope. The user specifies a trigger condi-
tion and some other parameters and starts the analog mode. As soon as the trigger condition
gets fulfilled by the data transferred on the I2C-bus, the I2C interface starts to record ana-
log samples of the SCL/SDA lines. Like with a stand alone oscilloscope the sample depth is
limited by the sample buffer on the I2C interface:

I2C Interface Sample Depth
telos Tracii XL 64 kSamples/line
telos Tracii XL 2.0 256 kSamples/line

After the sampling has been completed, the data gets transferred to the PC. When the trans-
fer is completed, the analog mode can be restarted

I2C Studio visualizes the analog data in parallel to the I2C messages and the levels of the
input testpins.

5.6.2 Acquire Analog Data

The waiting for the trigger can be activated by using the menu item ADC|Start or by using
the Start ADC button in the toolbar. After selecting start the Start ADC button gets greyed out
and the Stop ADC button gets enabled.

When the analog mode has found the trigger condition on the I2C-bus and the analog data
has been transferred to the PC, the Start ADC button gets activated again.

Starting the acquisition of the analog mode again will not delete the samples of the previous
acquisitions. There are two ways to delete the acquired analog data. The Clear All will delete
the samples together with the traced I2C messages and the levels of the input testpins. The
menu item ADC|Clear will delete only the analog data.

In some situations trigger conditions do not really help to find a problem, e.g. if there the
lines of the I2C-bus have not been connected correctly. For such situations I2C Studio offers
the manual shot, which can be started using the menu item ADC|Manual Start. This starts the
sampling of the analog data immediately.

5.6.3 Configuration

There are a lot of options, which can be configured for the analog mode. The configuration
dialog can be opened by clicking on the ADC|Options menu item. Figure ?? shows the config-
uration dialog.

The following parameters can be configured:

32

5.6 Analog Mode

Figure 5.4: ADC Options: Event Trigger

Sampling Rate Defines how many samples per second get recorded. Because the sample
depths of the I2C interfaces are limited, this parameter also defines the length of the
shot. Typically the sampling rate should be at least at factor 10 higher than the highest
I2C clock rate on the I2C-bus. So if the system under test uses I2C clock rates up to 100
kHz, the sampling rate should be at least 1 MHz to get a good resolution of the recorded
signal.

Pretrigger For most scenarios the developer is interested not only in the analog waveform af-
ter the trigger condition, but also some samples before the trigger condition are needed.
The pretrigger value defines, how many samples should be recorded prior and after the
trigger condition.

Trigger Selection I2C Studio offers three groups of ADC trigger conditions. The active one
can be selected using this option.

Miscellaneous Normally the ADC module takes only one shot after receiving the trigger
condition. If the Automatic Restart switch is enabled, I2C Studio waits automatically
for the next trigger after the previous ADC shot has been completed.

Note: There is always a short time between finishing the sampling of one shot and
reactivating the trigger module for the next one. Due to this fact I2C Studio
may miss some trigger conditions.

When the user changes the Trigger Selection, the left part of the dialog gets changed.

33

5 Tracer

Event Trigger

The event trigger group contains very basic trigger conditions. It is possible to trigger on the
following I2C events:

• START condition

• STOP condition

• acknowledge

• not acknowledge

• I2C protocol error

If more than one condition is enabled, the ADC shot gets triggered when one of the enabled
conditions is fulfilled.

These triggers are very easy to configure and use, but on an I2C-bus with heavy load they
are only of limited use, because e.g. normally all I2C messages start with a START condition.

Besides the trigger on I2C events this group also contains triggers for the input testpins. A
high-low transition on an input testpin can be used as trigger condition.

Message Trigger

Figure 5.5: ADC Options: Message Trigger

In some cases the developer knows exactly at which position the message of interest is sent.
In such a scenario the Message Count Trigger can be used. If this value is set e.g. to ”10”, the
shot is triggered with the 10th message seen on the I2C-bus, after pressing the Start ADC
button.

34

5.6 Analog Mode

Additional it is possible to trigger on an I2C protocol error and on high-low transitions of
the input testpins.

After one of the enabled trigger conditions get fulfilled, the ADC shot is triggered.

Enhanced Trigger

Figure 5.6: ADC Options: Enhanced Trigger

On an I2C-bus with several devices connected to complex trigger conditions are needed. In
such scenarios the Enhanced Trigger mode could be used, which can be seen in figure ??.

Using the Address field it is possible to trigger on I2C messages, which are sent to a device
with the specified slave address. Furthermore it is possible to configure the direction of the
transfer to be triggered on:

W The master writes data to the slave.

R The master reads data from the slave.

R/W The master reads or writes data from/to the slave.

The Data Bytes field can be used to trigger on specific values for data bytes. E.g. the dialog
in figure ?? has been configured to trigger, when the second byte of an I2C submessage equals
”0x20” and the lower 4 bits of the third byte equals ”0x03”.

All values in the Address and the Data Bytes field must be fulfilled in the same I2C sub-
message to trigger the ADC shot.

To give a small example of the Enhanced Trigger usage lets assume the following setup:
there is I2C slave at address 0x30, whose high-level protocol is register-based. The registers
are addressed by a 8-bit register pointer. The user wants to get an analog shot of the time
when the I2C master reads data from register ”0x55”.

35

5 Tracer

For this scenario the user would set the Address field to ”0x30” and ”W”. In the Data Byte
field the user would set the first byte to ”0x55” and all other bytes to Don’t Care (XX).

36

5.7 Time View

5.7 Time View

Figure 5.7: Time View

The time view offers a visualization of the traced data in the time domain. Figure ?? shows
the time view.

The visualization can be divided into three parts: frame data, analog data, and input testpin
data. All parts are synchronized.

Note: The timing information of the I2C interfaces ”telos Connii MM” and ”telos
Connii MM 2.0” are not accurate. Due to this reason the time view gives only
a rough information of the timing on the I2C-bus for these I2C interfaces.

5.7.1 Frame Data

The frame data part displays the data, which has been recorded on the I2C-bus. The following
symbol are used for the visualization:

START condition

STOP condition

data byte with ACK

data byte with NACK

37

5 Tracer

data byte with missing ACK/NACK

I2C protocol error

SMBus power off

SMBus power on

tracer was not running

Figure 5.8: Time View: Context Menu

It is possible to change the radix of the displayed data bytes using the context menu.
Using the context menu switch Virtual Bit Level (see figure ??) it is possible to enable a sec-

ond interpretation of the I2C data. This view shows the high/low transitions of the SCL/SDA
lines.

Note: The ”Virtual Bit Level” view is not based on timing information measured on
the I2C-bus. The timing of the real transitions on the I2C-bus may differ from
the one in the visualization.

If the option Messages Tool Tips in the context menu is enabled, additional information
about an I2C message are shown, when the mouse cursor is moved over the elements of this
I2C message.

5.7.2 Analog Data

The analog data part shows the analog electrical levels on the I2C lines SDA and SCL.
During the development process the developer often needs to have a look at the electrical

layer of the I2C-bus. The I2C-bus has got several parameters like e.g. the bus termination or
the cable capacitance, which the I2C-bus has to fulfil to get a working set-up.

Adjusting these parameters is much easier, if the user has got a view of the electrical lev-
els. Standard digital oscilloscopes come to their limitation, if they are used for the I2C-bus,
because most of them cannot trigger on I2C conditions.

The switches in the context menu under Analog can be used to enable or disable the view
of the SCL and/or SDA analog data.

The position of the trigger in the analog data gets marked with a blue line.

38

5.7 Time View

5.7.3 Digital Input Lines

The transitions on additional digital input lines (input testpins) can be monitored in the third
part of the time view.

The number of the available lines depend on the used I2C interface.
If the bus type has been set to SMBus for the tracer function window, the lines get renamed

from ”Pin 0” to ”Alert” and from ”Pin 1” to ”Suspend”. This reflects the special meaning of
the lines for the SMBus.

The visualization of the input testpins can be enabled or disabled using the context menu
items under Testpins.

5.7.4 Navigation

There are various methods to navigate within the time view.
One method is to simply use the vertical scroll bar. With this scroll bar it is possible to move

forward and backward in the traced I2C data. This is a good method to navigate within the
data bytes of one message, but it can be quite difficult to find e.g. the beginning of the next
I2C message.

In such a situation another method comes into play. There are several < and > buttons.
They have got the following meaning in the different parts of the time view:

Frame Data Jump to the previous or next START condition.

Analog Data Jump to the previous or next beginning of an analog shot.

Digital Input Lines Jump to the previous or next transition of the line.

Figure 5.9: Time View: Go To Message

To jump to an I2C message with a known number, the ”Go To Message” dialog can be used,
which is shown in figure ??. This dialog can be opened using the context menu item Go To
Message.

By double-clicking somewhere into the data all other views are synchronized to this time.

5.7.5 Zoom

At the upper right corner of the time view there are four buttons to zoom in the visualization.
The buttons have got the following meaning:

39

5 Tracer

maximum zoom out

zoom out

zoom in

maximum zoom in

There is an additional way to zoom into the data. By holding the left button of the mouse
down while moving the mouse over the time view it is possible to select a part of the currently
visualized data. Using Zoom Selected from the context menu this part can be magnified to
the full width of the time view window.

5.7.6 Measuring

The time view offers two cursors, which can be used to measure the signals on the SDA and
SCL lines. The cursors can be moved by holding down the left mouse button over one of the
cursors.

The upper box of each cursor displays the time difference between the left border of the
time view and the cursor. The time corresponds to the time ruler on the upper part of the
time view.

If there is analog data available under the current position of the cursor, the corresponding
voltages of the SDA and SCL line are displayed on the left side of the time view.

Some more time information can be found in the ”Info” box at the upper part of the time
view. The values of this box have got the following meaning:

Time Range Describes the length of time of the data currently displayed starting from the
left side and ending with the right side of the time view.

Start Time Time of the left edge of the time view measured from the time, when the tracer
has been started.

Time Interval The time between the two cursors.

Frequency ”Time Interval” converted to a frequency value. This can be used to determine
e.g. the frequency of an I2C master by measuring the bits of an analog shot.

Radix Radix currently used by the time view. It can be changed using the context menu.

5.7.7 Export / Copy to Clipboard

The visualization of the time view can be exported to an image. This image can be stored in
an external file or in the system’s clipboard.

To export the image to a file simply use the menu item File|Trace Data|Export. This opens
the wizard for exporting the recorded I2C data. On the first page of the wizard the user must
select the type of view which should be exported to the file. After choosing ”Time View” a
second page gets opened, which is used to configure what data should be exported, see figure
??.

If the image should be used in another MS Windows application, it can be exported directly
to the clipboard of the system. This can be done by selecting Copy to Clipboard from the
context menu of the time view. This opens directly the options page of the export wizard.

40

5.7 Time View

Figure 5.10: Time View: Export

The wizard will export those data, which is currently visible in the time view. If the user
wants to export the complete traced data, he must zoom out so that everything is visible in
the view and start the wizard.

The option page offers the following parameters, which can be configured:

Format The user can choose between the following three image formats:

Bitmap (*.bmp) Very common format in the MS Windows world, which is supported
by nearly all programs. As these files are not compressed, they get quite large.

Joint Photographic Experts Group (*.jpg) Format offering a very high, but lossy com-
pression. Has been developed for the storage of photographs, so that it does not
offer a really good image quality for I2C Studio’s purposes.

Portable Network Graphics (*.png) Offers a good lossless compression resulting in
acceptable file sizes. Very good suitable for files created with I2C Studio.

Tagged Image File Format (*.tif) Offers a good lossless compression resulting in ac-
ceptable file sizes. Very good suitable for files created with I2C Studio.

Resolution Defines the width and the height of the images to be created. The user can only
specify the width, the height gets calculated automatically.

Optimized For If the user selects to export several I2C messages at the same time, he will
always result into images, whose resolution is too low to see any interesting details.
To solve this problem, I2C Studio offers a functionality to split the result into several
separate image files.

41

5 Tracer

This option configures the number of images, which are created. To make the user the
decision, how many images are needed, very easy, he can simply specify the needed
resolution as frequency.

Let us assume the traced I2C-bus uses a clock rate of 400 kHz. For this set-up the user
would simply select an ”Optimized For” value of 400 kHz. If there are analog shots
of the electrical levels available, typically higher frequencies like e.g. 6 MHz should be
selected.

Channels Sometimes the user do not want to export all available parts of the time view. Us-
ing these switches the miscellaneous parts can be selected or deselected to be exported.

Misc The ”Timescale” options defines, whether a timescale is added to the exported files or
not.

Status Displays the number of images, which will be created, when user would export the
data with the current settings.

Figure 5.11: Time View: Exported Data

After clicking on Next > the third page of the wizard gets visible. On this page the user
must enter the name of the file to be created. A click on the Finish button finally starts the
creation of the file(s). Figure ?? shows a typical file, which has been created using the export
wizard.

42

5.8 Message View

5.8 Message View

Very often during the development process the exact timing information of each byte are not
of interest. Instead the developer needs information about the transferred data. This is the
domain of the message view in I2C Studio.

There are three different modes in the message view: raw mode, register mode, and value
mode. It is possible to switch between these modes by using the toggle buttons at the upper
part of the message view.

Figure 5.12: Message View: Raw Mode

Figure ?? shows the message view in the raw mode. The I2C data, which has been traced
on the I2C-bus, gets displayed as a table.

5.8.1 Navigation

On the right border of the view there are some controls to navigate within the table.
The buttons have got the following functions:

Jump to the first message.
Jump to the previous message.
Jump to the next message.
Jump to the last message.

43

5 Tracer

Another method to navigate in the I2C data is the thumb wheel. By moving the wheel up
or down the message view starts to scroll upwards or downwards. After releasing the wheel,
the scrolling stops. Scrolling speed is affected by the angle of the wheel.

Next to the buttons and the thumb wheel there is another control, which displays the cur-
rent position within all I2C messages. This control can be used not only to determine the
position but also to jump to a specific position. The user can simply click into the control to
define the new position, which should be visualized by the message view.

To jump to an I2C message with a known number, the ”Go To Message” dialog can be used,
which is shown in figure ??. This dialog can be opened using the context menu item Go to
Message.

By double-clicking on a row containing an I2C message all other views get synchronized to
this message.

5.8.2 Raw Mode

The raw mode displays the data bytes as they get transmitted on the I2C-bus.
Each row of the table contains one I2C message. If an I2C message consists of several I2C

submessages, they are displayed among each other.

Figure 5.13: Message View: Context Menu

The columns of the table can be enabled or disabled using the context menu items under
Display, see figure ??. They contain the following information:

No Position of the I2C message within the traced messages.

Status The three icons have got the following meaning:

1st Icon Shows whether the I2C messages has been transferred successfully:

no error
I2C address has not been acknowledged
one of the data bytes has not been acknowledged

44

5.8 Message View

2nd Icon Shows whether the I2C message has been transferred in the high-speed mode:

I2C normal-speed
I2C high-speed

3rd Icon Shows whether the START and the STOP conditions have been send one the
I2C-bus:

only START condition
START and STOP condition
only STOP condition

Addr Address of the I2C slaves, which has received the I2C message. As default the address
gets displayed as a 7-bit addresses with a hexadecimal representation. The numeric for-
mat can be changed using the context menu item Hex Radix. Some data sheets specify
the I2C addresses in the 8-bit format. This format can be enabled in the message view
with the 7 Bit Address switch in the context menu.

The icons can have got the following meaning:

7-bit I2C address
7-bit I2C address (8-bit representation)
10-bit I2C address

If an alias name has been registered for the displayed I2C address, this name gets shown
in this column.

Msg. Time The message time is measured from the first START condition of the I2C message
to the STOP condition.

Abs. Time The absolute time is the time of the first START condition. The user can choose
between three different formats using the context menu item Abs. Time: Short. The
formats ”Short” and ”Complete” refer to the real-time clock of the PC. In the format
”Relative” the time is relative to the time, when the I2C tracer has been enabled the first
time.

Idle Time The idle time is measured from the STOP condition of the previous I2C message
to the START condition of the current I2C message.

Dir An I2C message can be transferred into two directions. This column displays, which one
has been used:

master transmitter
master receiver

Length Number of data bytes (does not include the bytes of the I2C address).

Data Data bytes (does not include the bytes of the I2C address). Using the context menu it is
possible to change the numeric format from hexadecimal to decimal.

45

5 Tracer

Figure 5.14: Message View: Register Mode

5.8.3 Register Mode

If IRD or plug-in files have been registered, the register mode offers a high-level view of
the transferred data. The user can see, which data gets read or written from or to a specific
register.

Figure ?? shows the register mode. The visualization is based on the same data as the raw
mode shown in figure ??. So e.g. the first I2C message has been converted from transmitting of
”0x00” and receiving of ”0x00 0x00 0xCD” into reading ”0x00 0x00” from the ”Manufacturer
Access” register.

The columns have got the following meaning:

No See section ??.

Status The two status icons have got the following meaning:

1st Icon Shows whether the I2C messages has been transferred successfully:

no error
I2C address has not been acknowledged
one of the data bytes has not been acknowledged

2nd Icon Shows information about the SMBus feature ”Packet Error Checking” (PEC):

46

5.8 Message View

no PEC checksum available
PEC checksum available and ok
PEC checksum available and wrong

Addr See section ??.

Msg. Time See section ??.

Abs. Time See section ??.

Idle Time See section ??.

Dir The data can be read from the register and written to it. This icon specifies the direction:

data is written to the register
data is read from the register

Register Name of the register. The address pointer value of the register is specified in brack-
ets after the name.

Data Data bytes, which have been read from the register or written to it. Using the context
menu it is possible to change the numeric format. The default format is hexadecimal.

5.8.4 Value Mode

Like the register mode the value mode is based on IRD or plug-in files, too. It offers a visual-
ization of the messages one level higher than the visualization offered by the register mode.
In most cases one register does not contain exactly one value. E.g. a 8-bit register can contain
eight status bits or a 32-bit value is stored in four 8-bit registers.

This mode converts the transferred raw data to their meaning on the value level. Figure
?? shows the message view in the value mode. Lets take message three as an example. The
I2C message with the raw data ”0x03” and ”0x00 0x00 0xF7” has been converted to several
values. This transfer reads e.g. ”Not Supported” from the ”Internal Charge Controller” value
of the IC.

The columns of the message view have got the following meaning in this mode:

No See section ??.

Status The two status icons have got the following meaning:

1st Icon Shows whether the I2C messages has been transferred successfully:

no error
I2C address has not been acknowledged
one of the data bytes has not been acknowledged

2nd Icon Shows information about the SMBus feature ”Packet Error Checking” (PEC):

no PEC checksum available
PEC checksum available and ok
PEC checksum available and wrong

3rd Icon Shows whether the data is within the allowed range or not:

47

5 Tracer

Figure 5.15: Message View: Value Mode

data is within the range
data is out-of-range / invalid

Addr See section ??.

Msg. Time See section ??.

Abs. Time See section ??.

Idle Time See section ??.

Dir The data can be read from the register and written to it. This icon specifies the direction:

data is written to the value
data is read from the value

Value Name of the value.

Data Data, which has been read from the value or written to it.

Registers Gives detailed information about the registers, which are used to store the data of
this value. The register are specified in the format ”0xaa (b.c) or ”0xaa (b.c..d.e)”. ”aa”
is the address pointer of the register, ”b” and ”d” are the n-th byte of the register and

48

5.8 Message View

”c” and ”e” are the n-th bit of this byte. So e.g. ”0x10 (0.0..0.7)” stands for the first byte
of register ”0x10”.

5.8.5 Export / Copy to Clipboard

Figure 5.16: Message View: Export

The traced I2C data can be exported to an external file or to the clipboard using the visu-
alization of the message view. The exporting to a file gets configured using a wizard, which
can be started via the File|Trace Data|Export menu item. After selecting ”Message View” on
the first page of the wizard, the wizard should look like that one, which is shown in figure ??.

To export the data to the system’s clipboard, simply select Copy to Clipboard in the context
menu of the message view.

The option page of the export wizard offers the following options:

Text The user can select between three different formats:

ASCII (*.txt) The data gets exported to a formatted ASCII file. Using the ”Line Width”
parameter it is possible to configure the width of the created table. This format is
humanly readable.

Character Separated Values (*.csv) The CSV format can be imported into a lot of pro-
grams like e.g. Microsoft Excel or OpenOffice. Furthermore it is very simply to
write own parsers for this format. It conforms to RFC 4180. With the ”Separator”
switch the user can select, whether the cells in the file should be separated with
commas or semicolons.

49

5 Tracer

HyperText Markup Language (*.html) Creates a humanly readable HTML file, which
can be viewed with most standard WWW browsers like e.g. Mozilla or the Internet
Explorer. It conforms to XHTML 1.0.

Compression If the data is exported to a file, it is possible to compress the data:

Plain Do not use any compression.

Zip Use the ZIP format, which is supported by most compression tools on MS Windows
like e.g. WinZip or 7-Zip.

GZip Use the gzip format, which is very common in the Linux world, but also sup-
ported by most tools on MS Windows.

Message Range Specifies the messages, which should be exported.

Mode Like in the GUI there are three modes, which can be chosen.

Columns Defines the columns, which should be exported. The available columns depend
on the selected mode.

Absolute Time Mode Configures the format of the absolute time column. The user can
choose between three different formats. The formats ”Short” and ”Complete” refer to
the real-time clock of the PC. In the format ”Relative” the time is relative to the time,
when the I2C tracer has been enabled the first time.

Figure 5.17: Message View: Exported Data (HTML)

After the configuration has been completed the Next > button opens the third page of the
wizard. This page allows the user to specify a file name. The Finish button closes the wizard

50

5.8 Message View

and starts the exporting of the data. Figure ?? shows some data, which has been exported to
the HTML format.

51

5 Tracer

5.9 Live View

Figure 5.18: Live View

The live view shows the user the content, which is currently stored in the values of the
devices on the monitored I2C-bus.

This view is based on the information, which is stored in IRD files. So it can be used only
with I2C devices, for which appropriate IRD files are available and have been registered.

When the I2C tracer is running, this view permanently parses the incoming I2C data to
monitor any changes of the displayed values. Due to this fact the live view can display only
modifications, which have been seen on the I2C-bus. If an I2C device changes e.g. a status
value internally and this value is never read by an external I2C master, the view will not
update its view of the value to the new content. This limitation is equalized by the fact that
the view does not need to send any data actively to the I2C-bus to read out the devices.

In the upper part of the live view there is a combo box, which can be used to select whose
values should be displayed. After one I2C device has been selected, its current values get
displayed in the table. The columns of the table have got the following meaning:

Status Shows the status of the value:

The current content is valid.
The current content is out-of-range.

52

5.9 Live View

Value Name of the value.

R/W Some values are write-only or read-only. This column specifies the allowed directions.

read-only
write-only
read/write

Data Contains the current content of the value. If it is not known, the table shows ”Unknown
Value”.

The lines in the table, whose data have changed a minute ago, are highlighted with a bold
face font.

When working with devices, which contain not only a few values but a large quantity of
values, it can be difficult to find the needed values in the tables. To make life easier I2C Studio
offers a feature called ”quick watch”. The idea is to add the values of interest into a separate
table.

Figure 5.19: Live View: Quick Watch

To add a value to the quick watch simply select the appropriate row in the table and use
the context menu item Add To Quick Watch. After the values have been added, the user can
change to the quick watch using the same combo box, which is normally used to select the
displayed device. Figure ?? shows a quick watch to which some values have been added.

53

5 Tracer

Values can be removed from the quick watch by the context menu item Remove From Quick
Watch, which is available in the quick watch window only.

54

5.10 Statistic View

5.10 Statistic View

Figure 5.20: Statistic View

The statistic view displays a statistical analysis of the submessages, which have been traced
on the I2C-bus. Using this view the developer gets an overview e.g. which I2C addresses
have been accessed how many times or how long is the average submessage to the I2C slave
at address 0x50.

Figure ?? shows the statistic view. The table of the view contains a row for each I2C address,
to which submessages have been sent. The last row, which is called ”All”, contains the sum
of all rows.

Note: The statistic is based on I2C submessages. If e.g. an I2C message consists of
two submessages, these submessages are analysed separately.

5.10.1 Statistic

The columns of the table contain the following statistics:

Address I2C address of the slave.

The icons can have got the following meaning:

7-bit I2C address
7-bit I2C address (8-bit representation)
10-bit I2C address

In the case of transmission errors, it is possible that the lower part of a 10-bit address is
missing. In such cases rows with I2C addresses like ”0x0XX” are shown in the table.

Beside the normal I2C addresses the following values are possible in this column:

55

5 Tracer

Prot. Error An I2C protocol error can occur e.g. when a STOP condition is not sent
after the 9th data bit but after the 2nd.

SMB Pwr Off The power of a SMBus has been switched off.

SMB Pwr On The power of a SMBus has been switched on.

N/A The I2C address is missing, because e.g. the tracing starts in the middle of an I2C
message so that the START condition has not been recorded.

The interpretation of the I2C address can be switched from the default 7-bit mode to the
8-bit mode, which is used by some data-sheets. This is done using the context menu
switch Hex Radix. Moreover the user can select a decimal instead of the default hex-
adecimal interpretation using the 7 Bit Address item.

Errors Contains the number of I2C submessages, which has been transmitted with errors. If
the I2C address or one of the data bytes has not been acknowledged, this is counted as
error.

Sub Messages Number of submessages, which have been sent to this I2C address.

Bytes Sum of the data bytes, which have been exchanged with the I2C slave at this address.
This value does not include the bytes, which are used to transmit the I2C address on the
I2C-bus.

Length/Message Number of data bytes contained in the submessages exchanged with this
slave. The minimum, average, and maximum values are shown. This value does not
include the bytes, which are used to transmit the I2C address on the I2C-bus.

Time/Message Length of the submessages as time. The measured time starts with the START
condition and ends with the STOP condition of the submessage. If the submessage does
not contain a STOP condition, because it is part of a combined transfer, the time ends
with the acknowledge bit of the last data byte. The minimum, average, and maximum
values are shown.

Time/Bytes Length of the bytes in the submessages as time. This value takes into account
not only the data bytes but also the bytes, which have been used to transmit the I2C
address.

With the context menu of the statistic view, which is shown in figure ??, the user can disable
or enable the various columns of the table. Furthermore one value can be chosen, whose
result should be visualized with a bargraph. This bargraph displays up to three values with
different grey levels: the minimum, average, and maximum.

5.10.2 Export / Copy to Clipboard

The statistic can be exported to a file or to the system’s clipboard. The exporting to a file can
be started via the menu item File|Trace Data|Export whereas the exporting to the clipboard is
started using the context menu item Copy to Clipboard.

In both cases a wizard gets started. Figure ?? shows the options, which can be configured:

Text Three different formats are available:

56

5.10 Statistic View

Figure 5.21: Statistic View: Context Menu

Figure 5.22: Statistic View: Export

ASCII (*.txt) The data gets exported to a formatted ASCII file. This format is humanly
readable.

Character Separated Values (*.csv) The CSV format can be imported into a lot of pro-
grams like e.g. Microsoft Excel or OpenOffice. Furthermore it is very simply to
write ones own parsers for this format. It conforms to RFC 4180. With the ”Sepa-
rator” switch the user can select, whether the cells in the file should be seperated
with commas or semicolons.

HyperText Markup Language (*.html) Creates a humanly readable HTML file, which
can be viewed with most standard WWW browsers like e.g. Mozilla or the Internet
Explorer. It conforms to XHTML 1.0.

Columns Defines the statistics to be exported.

57

5 Tracer

Graphic In some formats it is possible to visualize one of the values with an additional bar-
graph. This option defines, which value should be exported with a bargraph.

Figure 5.23: Statistics Imported Into MS Excel

Figure ?? shows a CSV file loaded into MS Excel, which has been created by I2C Studio.

58

5.11 Find

5.11 Find

5.11.1 Find Window

I2C Studio offers only an I2C address filter to limit the messages, which get recorded. This can
result into a very large number of messages, if there is heavy load on the examined I2C-bus.
So in the worst case up to 20,000 messages/sec are recorded on an I2C-bus, whose master
work with 400 kHz.

After recording data on such a bus e.g. for one hour, it is nearly impossible to find the
interesting messages by hand. That is why I2C Studio comes with a find window allowing to
define very complex search criterions.

Figure 5.24: Find Window

Figure ?? shows the empty find window. Within this window the user can specify the rules,
which should be used to search for the interesting data.

Under ”Find Cases” the user can store several collections of find rules, so that he can switch
between different rule sets without deleting and entering them again and again. A new collec-
tion is started by clicking onto the New button. A no longer needed collection can be removed
by clicking onto the Delete button.

The ”Rules” area of the window allows to specify the search criterions for one rule set. The
rules are organized in a tree. The icons in the tree have got the following meaning:

59

5 Tracer

Sequence

Logical AND

Logical OR

Logical XOR

Rule

After the user has entered the rules, the search can be started by clicking onto the Find >>
button to search forward and onto the << Find button to search backwards. If the developer
has recorded a lot of I2C messages, the search process can take some time. There is a Cancel
button to stop a running search process. The current progress of the search gets visualized in
a progress bar at the lower part of the window.

5.11.2 Rules

There are three groups of items in the tree of the find window: the sequence, logical opera-
tions, and the rules.

The criterions within the sequence must be fulfilled sequentially. So after the first criterion
has been matched, the next one must be matched starting from the point where the first has
been matched, and so on. The sequence forms the top level of the tree.

Into the sequence the user can add logical operations. All rules and logical operations
contained into a logical operation get combined logical.

A rule defines the real search criterion. There are different types of rules, e.g. it is possible
to define an address rule.

Figure 5.25: Find Window: Context Menu

The tree is modified completely with its context menu, see figure ??. The context menu
knows the following items:

Add Sequence Adds an empty sequence.

Add Logic Operation Adds a logic operation. The results of all children under this operation
get combined logically. By default ”AND” is used for this combination.

60

5.11 Find

Add Rule Adds a rule.

Disable Disables the item. Its result does not contribute to the search.

Delete Deletes the item permanently.

AND Chooses the kind of used logical operation: AND.

OR Chooses the kind of used logical operation: OR.

XOR Chooses the kind of used logical operation: XOR.

Rename Renames the item.

Clear Removes everything from the tree.

Address Rules

Figure 5.26: Find Window: Address Rules

This type of rule can be used to search for I2C messages to slaves with specific I2C ad-
dresses. Besides the I2C addresses the user can specify the status of the I2C addresses:

Address I2C address to be searched for.

Status Status of the I2C address. The following values are possible:

ACK I2C address has been acknowledged.

NACK I2C address has not been acknowledged.

ACK/NACK I2C address has been or has been not acknowledged.

No confirmation The ACK/NACK bit is missing.

The Add All button inserts all possible 7-bit and 10-bit I2C addresses with status ”ACK/NACK”
to the list. With the Remove All button all rules can be removed from the table.

The rules shown in figure ?? match all I2C messages, which have been sent to the slaves
with the I2C addresses 0x50 and 0x52 and whose ACK/NACK bit is available.

61

5 Tracer

Figure 5.27: Find Window: Data Rules

Data Rules

The data rules match bits or complete bytes of the data transferred with I2C messages.
To add e.g. a search for I2C messages, which contain 0x10 as the first data byte, enter ”0”

to the ”Position” and ”0x10” to the ”Byte” field. Afterwards press Add to add the value to the
”Rules” table. To add search rules for bits click on the Down button in the ”Byte” field.

The rules, which can be seen in figure ??, match all I2C messages, which have ”0x00” as
first and ”0x22” as second data byte.

Note: The bytes, which are used to transfer the I2C addresses on the I2C-bus, are
not counted to the data bytes.

Data Any Pos Rules

Figure 5.28: Find Window: Data Any Pos Rules

This type of rule is similar to the data rule. It searches for a number of consecutive data
bytes. In contrast to the data rule the user cannot specify the position within an I2C message,
where the given data byte is expected.

The example in ?? searches of the sequence ”0x12, 0x34”.

Data Status Rules

This rule can be used to find I2C messages, where the I2C slave has acknowledged or not
acknowledged the data bytes. If this rule is set to NACK, all I2C messages will be found

62

5.11 Find

Figure 5.29: Find Window: Data Status Rules

where at least one data byte has not been acknowledged.
The example in figure ?? searches for NACK.

Event Rules

Figure 5.30: Find Window: Event Rules

I2C Studio displays messages in the tracer window, which are in fact no real I2C messages.
Instead they are events. This rule type can be used to search for these events.

One of the following events can be chosen:

I2C Protocol Error A violation of the I2C protocol has been detected, e.g. after five data bits
a STOP condition has been sent.

SMBus Power Down The power of a SMBus has been switched off.

SMBus Power Up The power of a SMBus has been switched on.

Tracer Restarted The tracer has been restarted.

The example in figure ?? searches for an I2C protocol error.

Length Rules

To search for I2C messages, whose submessages contain a specific number of data bytes, this
rule can be used.

The rule in figure ?? matches I2C messages, whose submessages consist of at least 12 and
up to 14 data bytes.

63

5 Tracer

Figure 5.31: Find Window: Length Rules

Testpin Rules

Figure 5.32: Find Window: Testpin Rules

The find rules cannot only be used to search within I2C messages, but also to search for
specific states of the input testpins or specific transitions on the input testpins.

Note: There are some limitations in the precision of this rule. It will always match
the I2C messages, which has been sent in parallel or before the searched state
of the testpin.

The rule shown in figure ?? will match, when a falling edge is detected on the first input
testpin line.

Submessage Rules

This rule consists of a combination of some of the previous mentioned rule types and some
additional rule types. This rule matches I2C messages, which contain an I2C submessage
fulfilling the search criterions specified by this rule.

There are several sub criterions, which can be enabled or disabled using check boxes:

Length Length of the data, see section ??.

Address I2C address of the slave to which this submessage has been sent, see section ??.

64

5.11 Find

Figure 5.33: Find Window: Submessage Rules

Direction If this option is not enabled, the rule will match submessages independent of their
transfer direction. The user can enable this option and choose ”TX” or ”RX” to match
only master transmitter or master receiver transfers.

Data Bytes Matches data bytes at specific positions, see section ??.

Data Bytes Any Pos Matches a sequence of data bytes, see section ??.

Data Status Matches submessages with the specified data status ??.

Byte Time Only I2C submessages will match, whose transmission of each data byte has
lasted a time within the given time range. The time range can be specific also as fre-

65

5 Tracer

quency. This frequency refers to one bit. A data byte on the I2C-bus consists of eight
data bits and the acknowledge bit. This criterion can be used to find I2C submessages,
which have been sent with a specific clock rate (SCL) or to find e.g. bus stretching.

Submessage Time The transmission time of the I2C submessage must be within the given
time range to match the rule.

The example matches all I2C messages, which contain an master transmitter submessage.
This submessage has to be sent to the slave with the address 0x60. It has to contain 15 data
bytes and has to be sent with a speed between 100 kHz and 400 kHz.

Message Rules

Figure 5.34: Find Window: Message Rules

Using this type of rule it is possible to define search criterions on I2C message level. The
following sub criterions can be enabled or disabled using check boxes:

Submessages Contains a number of submessage rules as they have been described in sec-
tion ??. A new rule can be added to the list with the help of the Add button. To remove
one or all rules the Remove and Remove All buttons can be used.

Each rule is connected with a position in the I2C message. In the example shown in
figure ?? each first submessage of an I2C message is compared with the ”TX Rule” and
each second submessage is compared with the ”RX Rule”.

66

5.11 Find

The Change button can be used to change the position of a rule.

Message Time The message time is the time from the first START condition of an I2C mes-
sage to its STOP condition. An I2C message matches this rule, if its message time is
within the specified time range.

Idle Time The idle time is the time from the STOP condition of the previous I2C message to
the first START condition of the current I2C message.

Testpins Matches the state of one of the input testpins, see section ??.

Figure ?? shows a rule, which will match I2C messages fulfilling the ”TX Rule” for their
first submessage and the ”RX Rule” for the second submessage. Furthermore there must be a
falling edge on the first testpin input line.

IRD Register Rules

Figure 5.35: Find Window: IRD Register Rules

If an IRD file has been registered, this type of rule can be used to define search criterions on
register level. The following sub criterions can be set:

IRD Alias Selects the I2C slave, which has been addressed by the I2C master. Only I2C slaves
are shown here, for which IRD files have been registered (see section ??).

Register Register of the I2C slave.

Data Data, which has been read from the register or which has been written to the register.

Data 2nd Some registers must be written and read within on I2C message. The data for the
write transfer must be specified in the ”Data” field and the data for the read transfer
must be specified in the ”Data 2nd” field.

67

5 Tracer

PEC Some SMBus slaves support ”packet error checking”. For such slaves this field can be
used to search for I2C messages with a specific PEC state.

Direction Specifies the direction of the transfer. If ”TX” is specified only transfers to the
register are found. If ”RX” is specified only transfers from the register are found.

The rule shown in figure ?? will match, when the ”Voltage” register of the ”Smart Battery
Data” device at address ”0x0b” is read and the register contains the value ”00 00”.

IRD Value Rules

Figure 5.36: Find Window: IRD Value Rules

If an IRD file has been registered, this type of rule can be used to define search criterions on
value level. The following sub criterions can be set:

IRD Alias Selects the I2C slave, which has been addressed by the I2C master. Only I2C slaves
are shown here, for which IRD files have been registered (see section ??).

Value Value of the I2C slave.

Minimum Minimum for the value, which has been read from the value or which has been
written to the value.

Maximum Maximum for the value, which has been read from the value or which has been
written to the value.

PEC Some SMBus slaves support ”packet error checking”. For such slaves this field can be
used to search for I2C messages with a specific PEC state.

Direction Specifies the direction of the transfer. If ”TX” is specified only transfers to the value
are found. If ”RX” is specified only transfers from the value are found.

68

5.11 Find

The rule shown in figure ?? will match, when the ”Voltage” value of the ”Smart Battery
Data” device at address ”0x0b” is read and the value is between ”10” and ”20”.

69

5 Tracer

5.12 Storage of Trace Data

As we have seen in the previous sections there are several formats, to which the traced data
can be exported. I2C Studio only supports exporting the data to these formats. It is not
possible to read these files back into I2C Studio.

There are several situations where a developer wants to store the traced data and read it
back later into I2C Studio. This can be useful e.g. to pass the data to other developers, when
working on a problem caused by the I2C communication.

I2C Studio can save the monitored data (I2C messages, analog shots, and transitions of the
input testpins) into a proprietary binary file format, which can also be read back. These files
are using the extension *.i2cl. To store the data efficiently these files are compressed.

To create such a file the user simply clicks on the menu item File|Trace Data|Save As. A file
selection dialog gets opened, where the user has to specify the name of the file to be created.
After a file name has been specified, the saving starts.

Figure 5.37: Status Bar: Saving Trace Data

This is done in the background. The current status of the saving is shown in the status bar
of I2C Studio, see figure ??.

The Cancel button in the status bar allows the user to cancel the saving process, while it is
running.

There are three ways to load an *.i2cl file into I2C Studio. The developer can use the
menu item File|Trace Data|Load or he can simply drag and drop the file from an Explorer
window to I2C Studio. Furthermore the user can simply double-click onto the file in the
Explorer.

70

5.13 Printing

5.13 Printing

The data, which has been monitored with I2C Studio, cannot only be written to files but can
also be printed.

After some data has been recorded the user can select the menu item File|Print to open the
print wizard. This wizard consists of two pages: the first page allows to select and configure
the printer, the second page specifies the data to be printed.

5.13.1 Printer Configuration

Figure 5.38: Print Wizard: Printer Configuration

The first page of the wizard can be seen in figure ??. The following parameters can be
configured by the user:

Name Selects the printer to be used.

Properties This button opens a printer specific dialog, which can be used to configure printer
specific options like e.g. the duplexer of the printer.

Print to File Selects whether the data generated by the printer driver is sent directly to the
printer or written into a file.

Margins Defines the top, right, bottom, and left margins.

71

5 Tracer

Paper Size Most printers support not only one size of paper but a large quantity of different
formats. Selects the format to be used.

Paper Source Larger printer have got more than one paper tray. This option specifies the
tray to be used.

Orientation The data can be rendered in the portrait or landscape mode.

After the printer has been configured, the user can jump to the next page of the wizard
using the Next > button.

5.13.2 Data Selection

Figure 5.39: Print Wizard: Data Selection

The second page of the print wizard, which can be seen in figure ??, can be divided into
three major parts.

On the upper left side there is a combo box, which configures the view to be printed. Here
the user can select between the time view and the message view.

Under this combo box there are the options, which define the data to be printed.
Finally on the right side there is a preview of the first page to be printed. The preview

depends on the currently configured options.
To start the printing the user has to select the Finish button.

72

5.13 Printing

Time View

If the user selects to print the time view, all data, which is currently visible in the time view
window, gets printed. To print e.g. all traced I2C data, the user has to zoom out completely
in the time view window before opening the print wizard.

The following options can be configured when printing the time view:

Optimized For If the user selects to print several I2C messages at the same time, he will
always result into print outs, whose resolution is too low to see any interesting details.
To solve this problem, I2C Studio offers a functionality to split the data to several pages.

This option configures the number of pages, which are created. To make the user the
decision, how many pages are needed, very easy, he can simply specify the needed
resolution as frequency.

Let us assume the traced I2C-bus uses a clock rate of 400 kHz. For this set-up the user
would simply select an ”Optimized For” value of 400 kHz. If there are analog shots
of the electrical levels available, typically higher frequencies like e.g. 6 MHz should be
selected.

Channels Sometimes the user do not want to print out all available parts of the time view.
Using these switches the miscellaneous parts can be selected or deselected to be printed.

Info Box A box containing some information can be added to the beginning of each page.
This box includes the absolute time, where the data of this page starts, the time interval
of the complete page, the radix, and the time range covered by the page.

Legend A legend describing the possible symbols can be added to the end of each page.

Status Contains the number of pages, which will be created, when the user selects to print
with the current configuration.

Message View

If the user selects to print out the message view, the following options are available:

Message Range Specifies the I2C messages to be printed out.

Mode Like in the GUI it is possible to choose between three different modes: the raw view,
the register view, and the value view.

Columns If the user does not want to print out all possible columns of the table, these
switches can be used to disable the appropriate columns.

73

5 Tracer

5.14 Plug-Ins

To get a high-level view of the traced I2C data the user can register IRD files or plug-ins,
which convert raw messages to interpreted messages. IRD files, which are based on XML,
can be written easily using a normal text editor or the IRD composer of I2C Studio.

They are very good solution for most register based I2C slaves. For more complex I2C
high-level protocols there is a better suited solution: the plug-in interface.

Plug-Ins can be written using all programming languages supporting the Microsoft .NET
framework. The following example shows how to program a plug-in in C#:

using telos.I2cApi.DotNet;
using System;
using System.Collections.Generic;
using System.Text;

public sealed class PlugIn : PlugInInterface
{
/***/
/// <summary>
/// This method describes the IC, whose traffic can be
/// parsed by the plug-in.
/// </summary>
/***/

public override PlugInInterface.Device SupportedDevice
{

get
{

I2cAddressRange address_range;
List<I2cAddressRange> address_ranges;

// create I2C address range containing I2C addresses, which are
// supported by this IC
address_ranges = new List<I2cAddressRange>();
address_range = new I2cAddressRange (new I2cAddress (0x40, false),

new I2cAddress (0x4f, false));
address_ranges.Add (address_range);

// create an object describing the IC
return new PlugInInterface.Device

("telos",
"Example Plug-In",
"This plug-in demonstrates how to use the plug-in interface.",
address_ranges);

}
}

/***/
/// <summary>
/// Interprets the I2C message with the specified index.
/// </summary>
/***/

74

5.14 Plug-Ins

public override string InterpretData (PlugInRawTraceData data, int index)
{

ParsedTraceData[] msg;
ParsedTraceData sub_msg;
StringBuilder result;

// create object for the result of the parser
result = new StringBuilder();

// get the I2C message to be parsed by the plug-in
msg = data[index];

// iterate over the submessages of the I2C message
for (int i=0; i < msg.Length; i++)
{
// new line
if (i > 0)

result.Append ("\n");

// get the submessage
sub_msg = msg[i];

// output the direction of the submessage
switch (sub_msg.Direction)
{

case ParsedTraceData.DataDirection.DIRECTION_TX:
result.Append ("TX: ");
break;

case ParsedTraceData.DataDirection.DIRECTION_RX:
result.Append("RX: ");
break;

default:
continue;

}

// output the data bytes of the submessage
for (int a=0; a < sub_msg.Data.Length; a++)
{

if (a > 0)
result.Append (" ");

result.AppendFormat ("{0:X2}", sub_msg.Data[a]);
}

}

// return result
return (result.ToString());

}
}

A complete documentation of the plug-in interface can be found in the I2C.NET API docu-
mentation.

75

6 Master

6.1 Introduction

Beside the tracer function window there is a second important type of function window in
I2C Studio: the master window. This type of window can be used to act actively as an I2C
master on an I2C-bus.

An I2C master can write data to I2C slaves and read data from them. Only I2C masters can
initiate transfers on an I2C-bus.

6.2 Quick Start

The New button or the File|New menu item can be used to open a new master window. Alter-
natively a new master window can be opened using the context menu of the workspace.

Figure 6.1: New Master Window

Figure ?? shows I2C Studio with a master window, which has just opened.

77

6 Master

The window is divided into three main areas. On the upper left side there is the command
tree. This tree contains all commands, which are executed one by one when the user clicks
on the Start button. The upper right side of the window contains detailed information about
the command, which is currently selected in the command tree. The remaining space in the
lower part of the window is filled out by the result view.

To get familiar with the handling of the Master, the following steps are defined to show an
easy example:

• Add a new I2C transfer by clicking on the I2C button. This button is located below the
task scheduler (see figure ??).

Figure 6.2: Select I2C Message

• Insert a new TX submessage by clicking on the TX button on the right side of the master
window.

• The submessage field appears and the Start button in the main menu gets activated (see
figure ??).

• Insert a data byte (e.g. ”00”) in the data field below the I2C address.

• If a real I2C hardware (e.g. telos Tracii XL 2.0) is used, the following steps have to be
performed before the start of a transfer. In case a Dummy interface is used, no action is
required.

– A sufficient supply voltage has to be selected to drive the I2C-bus. Therefore click
on the voltage displayed in the Status Bar (see figure ?? | I2C Vcc: ˜0V) or select the
Master|Hardware Options menu item. If no voltage is selected and the Start button
is pressed, an error message will be displayed.

78

6.2 Quick Start

Figure 6.3: Select Tx Message

Figure 6.4: Insert Data

Figure 6.5: Statusbar 0V

79

6 Master

– When the hardware dialog appears, please choose a value from the drop down
menu in the section I2C Vcc Supply (e.g. 3.00V) and confirm the new value by
pressing the OK button.

Figure 6.6: Select Master Voltage

– The new voltage appears in the Status Bar at the bottom of the I2C Studio window
(see figure ??).

Figure 6.7: Statusbar 3V

• Click the Start button in the Toolbar (see figure ??).

Figure 6.8: Toolbar

80

6.2 Quick Start

• If a real hardware Master is used, the execution result window below the task scheduler
shows an error by displaying the red error sign (see figure ??). Additional to that, the
message ”there is no slave responsible for this I2C address” is displayed.

Figure 6.9: Master on real Hardware with no Slave

• If a Dummy device is used instead, a valid transfer is displayed (see figure ??).

Figure 6.10: Master on Dummy with no Slave

81

6 Master

• Because no real I2C transfer is performed using the Dummy Master, this setup is able to
simulate a receiving device, thus a I2C Slave. Therefore no error occurs using a Dummy
Master.

• However, to get a valid I2C transfer without an error message using a real hardware
device, the internal Slave device must be enabled or a hardware slave device must be
connected to the Master. To activate the internal I2C Studio Slave, the following steps
have to be performed:

– Click on the Slave button in the Toolbar (see figure ??). The I2C Memory Slave
dialog will be opened.

– Enable the Slave by activating the appropriate check box in slave configuration
section and confirm this setting with CLOSE (see figure ??).

Figure 6.11: Slave Activation

• Run the master transfer again by clicking on the Start button in the Toolbar.

• The I2C transfer should be valid now. Thus the status of the transfer should be indicated
with a green OK sign in the result window (see figure ??).

6.3 Creation of Messages

6.3.1 Command Tree

After opening a new master window the developer has to define the messages, which should
be transferred over the I2C-bus.

Figure ?? shows a command tree, which contains five commands grouped into two folders.
The first folder contains four commands, which are used to initialize a TV tuner and the
second folder contains one command, which changes the currently active TV channel.

Each line in the command tree starts with a check box. If this box is checked, the command
or rather the content of the folder is going to be executed when the user clicks on the Start
button. Items, whose boxes are not checked, are not going to be executed. This feature can
be useful, if the developer wants to deactivate some commands temporarily without deleting
them completely from the tree.

The check box is followed by one of the following icons:

82

6.3 Creation of Messages

Figure 6.12: Master on real Hardware with Slave

Figure 6.13: Command Tree

folder (opened)
folder (closed)
I2C command
SMBus command
IRD command
pause command
input testpins command
output testpins command

83

6 Master

The last element in each line is a text, which can be entered by the user to identify a com-
mand.

There are several different ways, how to fill and modify the command tree. Below the
command tree there are four buttons, which can be used for this purpose. They have got the
following meaning:

Adds an I2C command to the command tree. There is a
drop-down list on the right side of the button, which can
be used to change the type of command. Figure ?? shows
this list.

Moves the selected item upwards in the tree.

Moves the selected item downwards in the tree.

Deletes the selected item from the tree

Figure 6.14: Drop-Down List for Changing the Type of the Command

Instead of the buttons the developer can use the context menu of the command tree. This
menu is shown in figure ??.

6.3.2 I2C

An I2C command sends an I2C message to an I2C-bus. Such an I2C message consists of one
or more submessages. The I2C command shown in figure ?? consists of two submessages: a
master transmitter submessage followed by a master receiver submessage.

The submessages get numbered serially. The number can be found on the left side of each
submessage. This number is followed by one of the following icons:

master transmitter submessage
master receiver submessage

On the right side there are three buttons before and after each submessage:

84

6.3 Creation of Messages

Figure 6.15: Context Menu

Figure 6.16: I2C Command

insert a master transmitter submessage
insert a master receiver submessage
delete this submessage

The submessages contains the following entries:

I2C address I2C address of the slave.

Data Data bytes to be sent to the slave (master transmitter only).

85

6 Master

Attached File (Type) This can be set to ”NONE”, ”ASCII HEX”, ”INTEL HEX”, and ”BI-
NARY”. If it is set to a value unequal ”NONE”, data gets read from an external file.
This data gets sent after the data, which has been specified in the ”data” field. This
option specifies the format of the external file (master transmitter only).

Attached File (Name) Path of the external file (master transmitter only).

Requested Bytes Number of bytes to be read from the slave (master receiver only).

By clicking into the grey headline, it is possible to change the alias name of the command.
This feature is not only supported by I2C commands, but by all other commands.

6.3.3 SMBus

Figure 6.17: SMBus Command

While the I2C specification allows I2C messages with an arbitrary number of submessages
and arbitrary length of the submessages, the SMBus specification defines a limited set of mes-
sage types:

• Quick Command

• Send/Receive Byte

• Write/Read Byte

• Write/Read Word

• Write/Read 32

• Write/Read 64

• Process Call

• Write/Read Block

• Block Write - Block Read Process Call

86

6.3 Creation of Messages

Note: The SMBus command is not supported by all I2C interfaces.

The first step after the creation of an empty SMBus command is the selection of the message
type. Afterwards the command has to be configured. Depending on the chosen message type
some of the following inputs are displayed:

I2C address I2C address of the slave.

Direction Specifies the direction of the transfer. ”TX” sends data to the slave, ”RX” reads
data from the slave.

Command Byte Specifies a command. This informs the slave how to process the received
data or which data has been requested by the master respectively.

Data (Byte/Word) Data to be sent to the slave.

PEC Enables or disables the ”packet error checking” (PEC) of the SMBus. PEC adds a CRC8
to each transfer to detect transmission errors.

Figure ?? shows the SMBus command mask. In this example the message type has been set
to ”Block Write”. The message gets sent to the slave with the address ”0x50”. Packet error
checking has been enabled. The data bytes, which gets transmitted to the slave, are ”22 22 E3
41 41 23 13 22 02”.

Note: There are some ICs on the market, whose PEC implementation does not con-
form to the SMBus specification.

6.3.4 IRD

Figure 6.18: IRD Command

While the I2C and SMBus commands allow to create messages on a very low level, the IRD
commands offer a higher abstraction. The I2C Register Description (IRD) defines a file format,
which allows to describe the register and values of ICs.

Note: The IRD feature is not supported by all I2C interfaces.

87

6 Master

Before an IRD command can be created, it is necessary to use the ”IRD & Plug-In Manager”,
see section ??. In this manager the developer can specify the IRD files, which should be used
for the slaves connected to the I2C-bus.

After the slave addresses have been registered, the slave and the value to be read or written
can be selected. This is done using the drop-down list at the upper part of the IRD command
editor. Figure ?? shows this editor. In this example the user has selected ”ADM 1021 A:
Configuration (Mask), <Set>”. ”ADM 1021 A” is the alias name of the slave, which has been
specified in the ”IRD & Plug-In Manager”. ”Configuration (Mask)” is the name of the value
to be modified. The direction of the command is specified by ”<Set>”.

If the user has selected to set a value in the IC, the value to be set must be defined in the
next step. In this example the value ”Configuration (Mask)” will be set to ”ALERT Enabled”.
The content can be specified numerically or by name.

Very often it is not possible to set values separately. Instead a whole group of values must be
modified at once. This is caused by the fact that the values are stored in registers. Very often
a register stores the content of several values. In this example ”Configuration (Run/Stop)”
must be set besides ”Configuration (Mask)”.

The value, which has initially been selected in the drop-down list, gets underlined.

6.3.5 Pause

Figure 6.19: Pause Command

There are some situations, where the user does not want to send all specified messages as
soon as possible to the I2C-bus. An example for such a situation are EEPROM or flash ICs.
After transferring some data to such an IC, the device needs some time to copy the data from
its internal cache to the EEPROM or flash cells.

A pause command tells I2C Studio to wait the specified time before going on with the next
command in the tree.

Figure ?? shows the editor for pause commands. In this example the interval of the pause
has been set to 5.2 seconds.

Note: The precision of the interval is limited. It is guaranteed that the interval is not
shorter than the specified time, but it can be longer. This is not a problem for
the typical usage of this feature.

88

6.3 Creation of Messages

6.3.6 Input Testpins

Figure 6.20: Input Testpins Command

All I2C interfaces have got a number of digital input lines. This command type can be used
to wait for certain levels on one or more lines.

The editor for the input testpins command is shown in figure ??. For each available line
there are three parameters:

Testpin Condition Defines the level to be expected:

L low level
H high level
X don’t care

Timeout Specifies whether to use a timeout or not.

Interval (s) If the timeout has been enabled, this parameter defines how long I2C Studio
waits for the expected level. If the expected level is not seen within this interval, I2C
Studio simply continues.

6.3.7 Output Testpins

With the output testpins command the user can set the level of the digital output lines of an
I2C interface. All I2C interfaces have got at least one digital output line.

For each available output testpin there is a line in the output testpins command editor. The
I2C interface used for the example in figure ?? has got two digital output lines. The user can
select one of three possible values for each line:

L low level
H high level
X don’t care

In the shown example the level of testpin 0 is set to don’t care. So I2C Studio will not change
the level of this testpin. Testpin 1 will be set to high level.

89

6 Master

Figure 6.21: Output Testpins Command

6.4 Results

After the user has started the master, the results are displayed in the result view. There is one
entry for each command, which has been defined by the user.

The result view consists of a number of columns, which contain the following content:

Type Type of the command.

Command Name The user can assign a name to each command. This name typically de-
scribes the purpose of the command.

Status Signals the status of the command. The icons have got the following meaning:

no error
I2C address has not been acknowledged
one of the data bytes has not been acknowledged
error
PEC (packet error checking) error [SMBus only]

Addr Address of the I2C slave, which has been addressed. The icons have got the following
meaning:

7-bit I2C address
10-bit I2C address

If an alias name has been registered for the displayed I2C address, this name gets shown
in this column.

Flags An I2C message can be transferred into two directions. This column displays which
one has been used:

master transmitter
master receiver
master transmitter / master receiver

90

6.4 Results

Data/Values These columns describe the transferred data. The content of both columns is
different from command type to command type.

Loop The loop counter shows how often the command has been transferred. The counting
starts when the user starts the master e.g. by clicking on the Start button. It ends when
the user stops the master e.g. by clicking on the Stop button.

6.4.1 I2C

Figure 6.22: I2C Result

The Data/Values columns contain the following entries:

Data Data bytes, which have been exchanged with the I2C slave. Data bytes, which have
been specified by the user for the master transmitter case and which have not been
accepted by the I2C slave, are marked with red color.

Length The first value indicates the number of bytes, which have been exchanged actually
with the I2C slave. The second value indicates the number of bytes, which have been
specified by the user. If the transfer was successful, both values should be the same.

The example in figure ?? shows two I2C messages. The first message consists of two sub-
messages: a master transmitter submessage containing the data byte ”0x11” and a master
receiver submessage requesting one data byte. The message has been exchanged with the I2C
slave on address ”0x50”. No error has occurred during the transfer.

The second message is a master transmitter message containing the data byte ”0x22”. The
transfer of this message was not successful, because no I2C slave was responsible for the
address ”0x51”.

6.4.2 SMBus

The Data/Values columns contain the following entries:

Type Type of the SMBus transfer (e.g. ”Block Read”).

PEC Defines whether the SMBus message has been transferred with or without ”packet error
checking”.

Command Command byte, which has been sent to the SMBus slave.

91

6 Master

Figure 6.23: SMBus Result

(TX/RX) Data Data bytes, which have been exchanged with the SMBus slave. Data bytes,
which have been specified by the user for the master transmitter case and which have
not been accepted by the SMBus slave, are marked with red color.

Figure ?? shows the result of two SMBus messages. A message of the ”Block Read” type has
been transferred as first. The transfer of this message failed, because PEC had been enabled
and the PEC checksum has been wrong.

The second SMBus message has been transferred successfully. It was of the ”Block Write -
Block Read Process Call” type. PEC has been disabled. I2C Studio has sent the command byte
”0x00” and the data bytes ”0x11 0x22”. The SMBus slave answered the request with several
data bytes.

6.4.3 IRD

Figure 6.24: IRD Result

For IRD message the Data column contains the name of the IRD values. The Values column
contains the values of the IRD values.

The example in figure ?? contains the results for three IRD messages. All messages have
been exchanged with an ADM1021A device, which is listening to address ”0x50”.

The first message sets the values ”Configuration (Mask)” to ”ALERT Enabled” and ”Con-
figuration (Run/Stop)” to ”Run”. The second message reads the ”Local Temp. Value” from
the device, which is ”2 ◦C”. The last message reads out the ”Manufacturer Device ID” of the
IC, which is ”16”.

92

6.4 Results

6.4.4 Pause

Figure 6.25: Pause Result

The Data/Values columns contain the following entry:

Interval The first value indicates the time in milliseconds, which has already elapsed. The
second value indicates the time, which has been specified by the user.

The example in figure ?? shows a pause command. The user has specified an interval of
”5200 ms”. Since the pause has already been completed, both values are ”5200 ms”.

6.4.5 Input Testpins

Figure 6.26: Input Testpins Result

The Data/Values columns contain the following entries:

Testpin (x) Level of the input testpin. The following icons are possible:

high level expected & found
low level expected & found
high level expected, low level found
low level expected, high level found

Timeout The first value indicates the time of the timeout, which has already elapsed. The
second values indicates the timeout, which has been specified by the user. Both values
are given in milliseconds.

93

6 Master

The example shown in figure ?? contains the result of one input testpins command. The
user has specified an input testpins command, which has expected high-levels on testpin 0
and testpin 1. A timeout of ”12 s” has been specified. Both testpin had the expected level,
when the master was started.

6.4.6 Output Testpins

Figure 6.27: Output Testpins Result

The Data/Values columns contain the following entries:

Testpin (x) Level to which the output testpin has been set by the master. The following icons
are possible:

high level
low level

The result view in figure ?? contains the results of two output testpins commands. Both
have been transferred successfully. The first command sets testpin 1 to high level. The second
command sets testpin 0 to low level.

6.5 Configuration

6.5.1 Master Options

The master function window can be configurated with its options dialog. The menu item
Master|Master Options opens this dialog.

The following parameters can be configured using the master options dialog:

Bitrate Defines the I2C bitrate (SCL) to be used by the master.

Low/Full Speed Configures the low/full-speed bitrate. Some I2C interfaces allow to
set I2C bitrates, which do not conform to the values defined by the I2C specifica-
tion.

High Speed If this value is set, the master sends the messages using the high-speed
mode of I2C. This mode is supported only by a few I2C devices on the market.
SMBus devices do not support this mode. The high-speed token gets sent with the
”Low/Full Speed” bitrate.

94

6.5 Configuration

Figure 6.28: Master Options

Master Code Configures the master code to be used in I2C high-speed mode. If more
than one I2C master talks to the I2C-bus, the master code defines the priority dur-
ing the bus arbitration.

Stop Transmission On Error If this check box is set and an error occurs, the master function
window goes to the stop state.

Stop Transmission On Arbitration Lost If this check box is set and an arbitration error oc-
curs, the master function window goes to the stop state.

Send Loop Normally the master function window sends each message on time. After send-
ing all messages having been defined by the user, the master goes into the stop state. If
this check box is set, the master continues sending the messages until the user stops the
master manually.

Note: The I2C high-speed mode is only available for I2C interfaces with a high-
speed license.

6.5.2 IRD & Plug-In Manager

The ”IRD & Plug-In Manager” dialog gets described in section ??.

95

7 Negative Tester

7.1 Introduction

The most common use of an I2C interface’s master functionality is to send and receive data
in compliance with the I2C-Bus Specification. This implies that the device we are talking to
is known to conform to the I2C standard, as well.

However, there are situations in which this particular aspect of a device is to be tested, i.e.
where the goal is to determine whether or not a device is fully compliant with the I2C-Bus
Specification and how this device behaves in case of ill-formed signals.

Figure ?? shows an example of the Negative Tester function window.

Figure 7.1: Example of Negative Tester Function Window

The Negative Tester is designed to fulfill all requirements introduced by this kind of appli-
cation. It is capable of acting as master or as slave. In both roles it allows to control all relevant
low-level aspects of bus communication, in particular it provides functionality to define the
timing for each and every bit.

It is also possible to send out patterns which violate the standard, e.g. make a ”byte” six
bits long. In slave mode the Negative Tester permits to stretch the clock at any time. The user
has full control over arbitration handling in master mode.

Furthermore, independent configurable output signals can be used to trigger external events
or to flag certain states in real time.

97

7 Negative Tester

In the master mode several testcases are available (refer to chapter ??) that can be executed
sequential. In the Slave Mode the slave buffer data can be defined.

7.2 Quick Start

A Negative Tester function window can be opened by clicking on the New button and select-
ing a Negative Tester. Another way is to click on the File|New menu item. Beside this it is
possible to open a new window using the context menu of the workspace. Figure ?? shows
the I2C Studio after the Negative Tester function window has just opened.

Figure 7.2: New Negative Tester Function Window

Note: The Negative Tester function window is only available, if a Negative Tester
interface is connected to the local or a remote PC. Besides the telos Negative
Tester a telos Tracii XL or telos Tracii XL 2.0 with a tracer license is needed to
use the full set of features of the Negative Tester. See figure ??

The Negative Tester and the telos Tracii XL / telos Tracii XL 2.0 must be connected to the
same I2C-Bus. The Negative Tester acts as a pattern generator and the telos Tracii XL / telos
Tracii XL 2.0 with a tracer license as an I2C-Bus tracer.

7.3 Negative Tester Window

The Negative Tester supports two different roles. It can work as an I2C master or as an I2C
slave. To select these modes, please click on one of the two tabs at the top of the the Negative
Tester window (refer to figure ??).

98

7.4 Master

Figure 7.3: Negative Tester and telos Tracii XL 2.0

To navigate directly to the appropriate chapter, please click on one of the following items:

?? (refer to chapter ??)

?? (refer to chapter ??)

For both modes the result (refer to chapter ??) is displayed at the bottom of the window.

The following chapters present a detailed description of all important Negative Tester func-
tions and features. Please refer to Figure ?? which shows the Negative Tester Window with
the names of the sub windows and tabs.

7.4 Master

After the activation of the Master Tab (refer to figure ??) the I2C Studio acts as a master.
This mode can be used to test I2C slaves by sending and receiving data. One or more testcases
can be defined and executed sequentially.

To start and stop the sending process, use the menu item Negative Tester|Start (F5)/Stop
(F6) or the corresponding buttons in the toolbar. Figure ?? shows the Master Tab, which has
just opened.

The left side of the Master Tab contains the ?? (refer to chapter ??) and the right side shows
the current selected testcase in the ?? (refer to chapter ??).

99

7 Negative Tester

Figure 7.4: Negative Tester Window

7.4.1 Testcase Selection Window

Figure ?? shows this window (with the default testcase) as it exists after opening a new func-
tion window. This window provides a tree view that is used to define the sequence of the
master testcases.
Each new testcase is placed in a selection tree. With this feature it is possible, to add several
different testcases to the tree. If the same testcase should be performed more than once, it can
be added several times to the tree. Each test (no matter if the type is the same or not) can
consist of individual parameters (e.g. bitrate, messages data, ..) This provides a freedom of
choice on a high level in the use of the testcases.
The data for the current selected testcase is displayed and can be changed in the window at
the right side of the tree (refer to chapter ??).
Each testcase can be enabled/disabled for execution (checkbox). To add, remove and move
the testcases use the buttons at the bottom of this window or the context.

100

7.4 Master

Figure 7.5: Master Tab

Figure 7.6: Testcase Selection Window

The testcases are automatically named and individually numbered to ensure a valid op-
eration. However, the user can choose a more significant name, if necessary. If the default

101

7 Negative Tester

testcase name in the selection window should be changed, this can be done by a single click
to the testcase in the via ?? (see chapter ??) or via ?? (see page ??).

Buttons

The following buttons as part of the Testcase Selection Window are available:

New Testcase (select same type as current)

New Testcase (select type via testcase list)

Move Testcase Upwards

Move Testcase Downwards

Delete Testcase

The user can choose whether to select the same type of testcase selected lastly by clicking
directly on the New Testcase button, or select a new testcase by clicking on the arrow button
next to the New Testcase. Figure ?? shows the list with the testcase types (refer to chapter ??).

Figure 7.7: Add New Testcase Menu

Context Menu

Additional to the buttons mentioned above it is possible to use the Context Menu to edit the
testcase tree in the selection window. While a testcase is selected by a single click of the left
mouse button, the right mouse button can be used to activate the Context Menu (see figure
?? and ??). This menu provides the button actions described in section (??) and also some
additional operation features like copy, paste and rename.

Thus it is possible to copy a testcase and paste it at a defined position in the testcase tree.
It can be decided whether to paste the copied testcase above or below the current selected

102

7.4 Master

testcase. The menu entries are dynamically switched on or off depending on the current test-
case tree composition and the pre-selected menu function. E.g. the Paste option is available
earliest after the Copy function was selected (see figure ??).

Figure 7.8: Negative Tester - Context Menu (partly activated)

Figure 7.9: Negative Tester - Context Menu (fully activated)

7.4.2 Testcase Window

This window (see figure ??) shows the data of the currently selected testcase in the ?? (see ??) .
It is used to enable/disable the testcase for execution, set the type (refer to chapter ??) and the
parameters for this testcase. Figure ?? shows an example of the Testcase Window (selected
testcase: ??).

103

7 Negative Tester

Figure 7.10: Testcase Window

The window shows the I2C-Bus messages that will be sent with the current configuration.
For each message a graphical visualization of the SDA/SCL signals is available. Direct after
the changes of a parameter the data will be updated automatically in the ??. Thus the user can
easily understand the function of the parameters by watching the changes in the Messages
Data frame (refer to figure ??).

The Testcase Window is divided in the following sub windows:

Current Testcase (see ??) - to define the testcase data

Message Data (see ??) - to show the I2C-Bus data

7.4.3 Testcase Parameter Window

This window is used to define the message data for the testcases.
Figure ?? shows an example of the ?? testcase.

The following tab pages are available:

Testcase ?? - to define of the the testcase parameters

Message ?? - to define of the the message data (like address, send, receive, ...)

Configuration ?? - to define of the the configuration (like bitrate, timing, ...)

Each testcase type (defined in ??) provides a number of Special Parameters which are valid
only for this testcase. They can be set in the ??.
The Reset button sets the default values for all parameter of the current selected tab page.

104

7.4 Master

The Common Parameters in the ?? and ?? are available for several testcase types. For some
testcases some common parameter are omitted because there is a conflict with the special
parameter.

Testcase Parameter Tab

This tab page is used to set the type (refer to chapter ??), the user name and the testcase
parameter. A description of the testcase function and the parameters appear in the text field
next to the parameter. Figure ?? shows an example of the ?? testcase.

Figure 7.11: Testcase Parameter Page

The following elements are available:

Enabled Enable/Disable the testcase for the execution

Name Individual name of the testcase given by the user (appears in the tree)

Type Selected testcase type (refer to chapter ??)

Testcase Parameter Parameter of the testcase (refer to chapter ?? for a detailed description)

Reset default Set the default values

Testcase Message Tab

The ?? testcase provides additional functions. Thus two types of the Testcase Message Tab
pages exist:

??

??

Testcase Message Tab (Standard Testcases)

This tab page is used to define the message data for the all testcases (except ?? testcase). The
Negative Tester can work as a master transmitter and/or as a master receiver. This tab page is

105

7 Negative Tester

used to set the address, to enable the send/receive function and to define the messages data.
Figure ?? shows an example of the Testcase Message Tab.

Figure 7.12: Testcase Message Tab Page

106

7.4 Master

The following elements are available:

I2C Address I2C address (7/10 bit) of the slave device, which should be tested by the test-
cases

Transmitter all settings regarding the transmitter function

Checkbox Enable/Disable data transmitter

Address Pointer Sub Address of the slave device

Data Data to be transmitted

Receiver all settings regarding the receiver function

Checkbox Enable/Disable data receiver

Address Pointer Sub Address of the slave device

Length Number of received bytes from the device

Expected Data - Checkbox Enable/Disable compare function

Expected Data -Data Field Compare data for received data

Transmitter and receiver are enabled by default and can be individually disabled using the
appropriate checkbox. The transmitter provides a data preset (0x00 - 0xFF) which are sent to
the I2C slave address. The additional field Address Pointer can be used to set the sub address.
This is the first data byte after the address. It specifies an internal address of the slave device.
Thus, with this pointer it can be specified, to which internal memory address the transmitted
data should be stored or from which memory address data should be received.

The Expected Data will be compared to the received data in the ??. To enable this function set
the Check checkbox. The Length field is used to set the length of the data to be received. If the
length is greater than the number of expected data, the test will fail. If the length of received
data is smaller, than the expected data of the remaining bytes are ignored. If the length of the
compare data is smaller than the defined length, the compare function will be started at the
first byte of defined data.

107

7 Negative Tester

Testcase Message Tab (Expert Testcase only)

This tab page is used to define the message data for the ?? testcase. In the expert mode it is
possible to define each kind of messages in and outside the I2C-Bus Specification. The entries
of bit/condition can be changed, added and removed to create each kind of invalid i2c-bus
message. Be aware that there are no fields to define the address or the read/write direction.
Thus the user has to take care that the message starts/ends with a start/stop condition and
that the first byte is a valid address with R/W bit.

The GUI differs from the other testcases. The upper area is used to define the message data.
In the upper left window the user can select the bytes/condition data and the upper right area
is used to show and to edit the selected data. To store the changed data the Update button
must be pressed, otherwise the data is lost.

The lower area shows all messages as they will be send on the i2c-bus in graphical format
with the byte and bit/condition data. With the horizontal and vertical scroll bar the user can
scroll through the message data.

With the context menu in the lower window it is possible to show/hide the data and con-
ditions text in graphic, and to set the option ”7/8 Bit” and the ”Hex/Radix”. The log of the
??) can be deleted as well. These settings are valid for all elements of the control. E.g. if the
”Radix” option is set, all values are displayed in the decimal format and each user input is
interpreted as decimal value.

Figure ?? shows an example of the messages of the ?? tab page.

Figure 7.13: Testcase Message Tab (Expert Testcase)

108

7.4 Master

To get a description of the byte and bit condition text, please refer to ??.

Each combination of bits, conditions and acknowledge can be defined for the Transmitter
mode. If the defined byte ends with a ”NACK” and no slave responses, the transmission
will be terminated after this byte. To proceed the transmission in any case, the entry ”NACK
(ignore)” must be used. If a ”1” will be sent and another device stretches the bus, the trans-
mission will be terminated as well.
One or more complete receive bytes (bit 0..7) can be defined for the Receiver. It is not possible
to receive less than eight bits. The data in the Byte (Hex) is displayed as ”??”, if the received
data bits are unknown.

Two views are available to add and change the data of the message. It can be changed via
options buttons at the top of the window:

Byte: ??

Bit/Condition: ??

Each view has a common and a special function only for this view.

In the upper left area for both views a table with the following columns exists:

Addr Field contains the address of the I2C slave, which has been addressed by the master.
The icons have got the following meaning:

7-bit I2C Address
10-bit I2C Address

Dir Direction of the message (Transmit/Receive)

Master Transmitter
Master Receiver

Length Length of the message

Data This column shows the data in different views.

.
The following buttons are available for both views:

Add new: data byte / bit/condition

Move current data byte / bit/condition upwards

Move selected data byte / bit/condition downwards

Move current selected data byte / bit/condition line upwards (only bytes)

Move selected data byte / bit/condition line downwards (only bytes)

Delete: data byte / bit/condition

109

7 Negative Tester

Testcase Master Expert Message: Change Byte

In this view the message data is displayed in a table. The data is displayed in the byte format
(column: Data). Each line starts with the address of the data and contains eight data bytes.
The data element is a data byte with the acknowledge or the condition (?? tab page).

If the Byte representation is selected, the following data is visible at the right area of the
screen:

Current Byte: [AddressByte] in decimal (0x[AddressByte] in hex)

Hex/Dec: data in hex/decimal format

Bin: data in binary format

In the ”Bin” field the bits/condition of the data byte can be set (please refer to: ??). After
the data is changed the associated values in the hex/bin box and in the table will be updated.

Figure ?? shows an example of the messages of the ?? tab page.

Figure 7.14: Testcase Message Edit Byte (Expert Testcase)

The following buttons are available for this view:

Add data byte (Write Data)

Use the arrow to add one of the the following data:
- Byte (write): add write byte
- Start Condition (S): add start condition
- Stop Condition (P): add stop condition
- Byte (read): add read byte

Delete data byte

110

7.4 Master

Testcase Master Expert Message: Change Bits/Conditions

In this view the message data is displayed in a table. The data is available in the byte and
bit/condition format, which is displayed in the graphical visualization of the SCL/SDA sig-
nals (?? tab page). The bits and condition can be selected directly in the graphic (left area).
The selected data can be changed in the edit fields in the right area.
The horizontal scroll bar can be used to show all bytes and bits of the message.

If the Bit/Condition mode is selected, the following data fields are visible at the right area
of the screen:

Current Byte: [AddressByte] in decimal (0x[AddressByte] in hex)

Hex/Dec: data in hex/decimal format

Current Bit/Condition: [AddressBit] in the byte

Bin: available data in the list box

If the ”update” button is pressed the associated value will be updated in the hex field and
in the SCL/SDA graphical representation.

Figure ?? shows an example of the messages of the ?? tab page.

Figure 7.15: Testcase Message Edit Bit (Expert Testcase)

The following buttons are available for this view:

Add data byte (Write Data)

Use the arrow to add one of the the following data:
- 0: add low bit
- 1: add high bit
- NACK: add acknowledge (checked)
- NACK I: add acknowledge (checked ignore)
- Start Condition (S): add start condition
- Stop Condition (P): add stop condition

Delete data bit/condition

111

7 Negative Tester

Testcase Master Expert Message: Byte and Bits Condition Text

The data bytes provide the following available condition text:

Text Direction Description
S send start condition
P send stop condition
(0..FF) NA send data byte (hex) with an acknowledge (checks acknowledge)
(0..FF) NAI send data byte (hex) with an acknowledge (ignores acknowl-

edge)
(0..FF) NA ?? send data byte (hex) with an acknowledge (checks acknowledge)

with additional (invalid) bits/conditions
??/[data] receive receive data is always unknown
ACK receive send an ACK for the slave (expects more data)
NACK receive send a NACK for the slave (last byte)

Table 7.1: Negative Tester Master Byte Text

The data bits provide the following available condition text:

Text Direction Description
0 send low value
1 send high value
S send start condition
P send stop condition
NACK send acknowledge (high value) - transmission terminated if the

slave does not generate the acknowledge
NACK.I send acknowledge (high value) - ignores the acknowledge from

the slave
NACK receive send a NACK for the slave (last byte)
NACK.I receive send a NACK for the slave (last byte)

Table 7.2: Negative Tester Master Bit Text

112

7.4 Master

Testcase Master Expert Message: Time Cursor

In the visualization of the graphic signals two cursors are available to show the current time
and the delta time between the cursors.

Double click on the scale with the left mouse button to enable the cursor that shows the time
of the current position. Then click on the scale to set the cursor to each position. To set the
second cursor hold the shift key during the click with the left mouse key.

Figure ?? shows an example of the messages of the cursor functions.

Figure 7.16: Testcase Expert: Time Cursor

113

7 Negative Tester

Testcase Configuration Tab

This tab page is used to set the bitrate, timing and other behavior of the I2C-Bus. Most mes-
sages will be transferred using the default timing according to the bitrate as defined in the
I2C-Bus Specification. Figure ?? shows the tab page with bitrate setting (Time Configuration
not set).

Figure 7.17: Testcase Configuration Tab Page

The following elements are available:

Bitrate (Hz) Select the bitrate in [Hz]

Low-Speed Low-Speed bitrate of the message

High-Speed High-Speed bitrate of the message (use Checkbox to enable)

Options Set options

Ignore Stretching Enable Checkbox to ignores the bus stretching

Ignore Arbitration Lost Set Checkbox to ignores the loss of arbitration on SDA

NACK Behaviour Select behaviour of the test if a NACK occurs

Release SCL/SDA Release SCL and SDA immediately

Generate STOP Generate a STOP condition (default)

Restart Script Restart the test

Timing Configuration Enable Checkbox to show timing fields (refer to ??)

Button: Reset default Set the default values

Some testcases provide the option Time Configuration to change the timing of I2C-Bus mes-
sages (refer to chapter ??). If this option is enabled the bitrate can not be set. Thus the bitrate
fields show not available (n.a.). A help text always appears for the timing field that has the
focus. Additional to that the area in the SDA/SCL signals for time parameter is emphasized
(only for low speed). Figure ?? shows the tab page with the set option Time Configuration.

Most messages will be transferred using the default bitrate which is already set. Only some
testcases, which are testing the bitrate itself, may use other bitrates. For this testcases the bi-
trate field is not available (n.a.). If a high-speed operation is requested, it can be enabled and
its bitrate can be adjusted too. In high-speed mode the master code gets transmitted using the
standard bitrate. The remaining message gets transferred using the high-speed bitrate. The

114

7.4 Master

Figure 7.18: New Negative Tester Window

I2C high-speed mode requires compatible I2C slaves. This mode should not be used with
standard I2C slaves.

The option Ignore Stretching forces SCL to the other required bitrate. It may lead to an in-
correct data transmission if enabled (e.g. due to short SCL high times). The option Ignore
Arbitration Lost ignores the loss of arbitration on SDA e.g. in a multimaster system. This
case usually leads to faulty data. If this option is disabled the Negative Tester stops after the
loss of arbitration is detected (recommended setting). The option ”NACK Behaviour: Restart
test” could be useful if a slave sends a NACK to its address while the slave is busy (e.g. if an
EEPROM is performing an internal write operation). Be aware that can cause the test to run
forever if there is no slave!

7.4.4 Message Data Window

This window shows a graphical visualization of the SDA/SCL signals (I2C-Bus data and
clock) that will be sent using the current configuration. According to the parameters for the
testcases a number of read/write messages appear in this window.
It can be used to understand the functionality of different parameters settings by watching the
changes in the graphical message representation. A zoom and scroll function for the signal
is available to have a detailed look to each bit. After a change of one parameter in the ?? the
data will be immediately updated. Figure ?? shows the Message Data Window.

Figure 7.19: Message Data Window

115

7 Negative Tester

The columns have got the following meaning:

No Number (index) of the message

Loop The number of repetitions of the message

Addr This field contains the address of the I2C slave, which has been addressed. The icons
have got the following meaning:

7-bit I2C address
10-bit I2C address

Dir Direction of the message (Transmit/Receive)

master transmitter
master receiver
master transmitter / master receiver

Len Send Number of bytes sent to the slave device

Len Rec Number of bytes received from the slave device

Data Send Data sent to the slave device

Signals SCL/SDA signal of the I2C-Bus message

The following buttons are available:

Maximum Zoom Out

Zoom Out

Zoom In

Note: For the received data the SDA signals appear always as high in the graphic.

7.4.5 Message Timing

Normally the message timing will be set according to the bitrate (refer to chapter ??). For some
timings please refer to the I2C-Bus Specification (Rev. 6 4 April 2014) (https://www.nxp.
com/docs/en/user-guide/UM10204.pdf). The value can be changed from the standard
value. Be aware that the bitrate may be changed if you set the values.

Table ?? contains the name of the field in the dialog (column: Field) and the name of the
time in the I2C-Bus Specification. The following columns show if this value is available for
low speed and high speed (LS/HS). In the last column (Description) the description of the
timing is visible.

116

https://www.nxp.com/docs/en/user-guide/UM10204.pdf
https://www.nxp.com/docs/en/user-guide/UM10204.pdf

7.4 Master

Field Time LS HS Description
Start: Hold (ls) tHD;STA x The hold time START condition
Start: Hold (hs) tHD;STA x The hold time START condition
RepStart: Hold (ls) tSU ;STA x The setup time repeated START condition
RepStart: Hold (hs) tSU ;STA x The setup time repeated START condition
Stop Setup (ls) tSU ;STO x The setup time for STOP condition
Stop: Setup (hs) tSU ;STO x The setup time for STOP condition
Clock: Before (ls) tLOW x The LOW period of the SCL clock before the

high clock
Clock: Before (hs) tLOW x The LOW period of the SCL clock before the

high clock
Clock: After (ls) tLOW x The LOW period of the SCL clock after the high

clock
Clock: After (hs) tLOW x The LOW period of the SCL clock after the high

clock
Clock (ls) tHIGH x The HIGH period of the SCL clock
Clock (hs) tHIGH x The HIGH period of the SCL clock
Buff tBUF x x The bus free time between a STOP and START

condition (graphic shows the time/2).

Table 7.3: Message Timing

7.4.6 Master Testcase Types

Table ?? shows the available testcases for the master:

Testcase Type Transmiter Receiver Time
?? X X X
?? X X
?? X X
?? X X
?? X
?? X X
?? X X
?? X X X
?? X X

Table 7.4: Master Testcase Types

Not all options are available for all testcases. Table ?? shows which testcase can be used to
send/receive data (column: Transmitter/Receiver). Additional to that, some testcases pro-
vide the option to set the message timing (column: Time).

Note: If the message timing is enabled, the real average bitrate cannot calculated in
the evaluation window.

117

7 Negative Tester

Master Data

This testcase sends messages with different lengths via I2C-Bus. The length of the first mes-
sage, which gets transferred, is specified by Start (bytes). The length of the following mes-
sages get periodically incremented, defined by Step (bytes). If the length exceeds the value
specified by Stop (bytes), the test stops.

Note: A master transfer with a length of zero bytes works only with special I2C
slaves. Other I2C slaves can hold the SDA line low after this test has been
executed.

Master Expert

This testcase is used to send each combination of bits and conditions inside and outside the
I2C-Bus Specification.
Each bit and condition of the byte can be set. Therefore an enhanced dialog for the message
data exists (refer to ??).

E.g. it is possible to:

Send messages without start/stop conditions.

Send start/stop conditions inside a message byte.

Send bytes longer or shorter than 8 bits.

For this testcase the user must be familiar with the specification (7/10 bit addresses, sub ad-
dresses, ...) to make sure that messages will send correctly.

The number of send message can be defined in the field Cycles. The data of the messages
are the same for each cycle.

Master Clock Diversifying

This testcase transfers I2C messages via the I2C-Bus, which contain longer pauses between
some of the bits. With this test it is possible to check, whether a slave works correctly with an
asynchronous clock. These pauses are added between different positions of the bits.

The length of the pauses can be configured by the user. The first message uses the pauses
specified by Start (ms). The pauses of the next messages are periodically incremented by Step
(ms). The test stops, after the length is reached, which is specified in Stop (ms). All values are
specified in milliseconds.

Master Stress

A lot of problems will only occur, if there is a lot of traffic on the I2C-Bus and the I2C slave,
which is tested, has to handle a lot of requests within a short time.

This testcase is used to emulate this situation. During the time, which is specified by the
Time (s) value, the I2C-Bus load is nearly 100%. Even the time between two consecutive I2C
messages is very short, because the complete message generation is handled in the Negative
Tester interface. So the PC does not add any latency.

118

7.4 Master

Master Stop

This testcase transfers I2C messages via the I2C-Bus, which contain STOP conditions at illegal
positions. E.g. a message with less than 1 data byte like [START, ADDR, 5 Data Bits, STOP] is
created. The purpose of this test is to verify that an I2C slave resets its internal state machine
correctly after receiving a STOP condition.

Message lengths within the range specified by Start (bytes) and Stop (bytes) are tested. The
length gets periodically incremented by Step (bytes).

For each defined message length, which should be tested, eight transfers are created. Each
transfer places the STOP condition at a different bit position. Thus the first transfer contains
the STOP condition after the first bit of the last byte, the second transfer contains the STOP
condition after the second bit of the last byte and so on.

Master Timing

This testcase transfers an I2C message via the I2C-Bus with different timings. Several combi-
nations of [tHD;DAT], [tSU ;DAT], and [tHIGH] are tested. The tested minimum and maximum
values are conform to the value specified for standard- and fast-mode devices. The values for
fast-mode plus devices are specified in the I2C-Bus Specification And User Manual.

By setting the appropriate checkboxes it is possible to execute this test only for the selected
requirements of standard-mode, fast-mode or fast-mode plus, or for all modes.

Note: For this test the signal slope on SCL and SDA is important, because otherwise
it cannot be guaranteed that the Negative Tester can create the requested tim-
ings on the I2C-Bus. Due to this fact it is important to use a strong termination
on the I2C-Bus and to prevent long cables.

Master Speed

This testcase transfers an I2C message with different bitrates. The purpose of this test is to
verify that an I2C slave supports the specified bitrates.

The first message uses a bitrate specified by Start (Hz). Messages are using a bitrate, which
is periodically incremented by Step (Hz). This testcase ends when the bitrate has reached the
limit value given by Stop (Hz).

Master Termination

This testcase transfers an I2C message with different values for the I2C bus termination (SCL
/ SDA). The purpose of this test is to verify that an I2C slave works correctly with different
types of slopes.

The first message uses a termination specified by Start (Ohm). The following messages
are using the next values from the list of possible terminations. This testcase ends if the
termination, specified by Stop (Ohm), is reached.

Master Spike

This testcase adds spikes to the transferred I2C message. Conforming to the I2C-Bus Specifi-
cation an I2C slave has to suppress spikes of up to [tSP]. The spike length can be configured

119

7 Negative Tester

in three steps from 40 ns to 120 ns. Usually 40 ns should be used, but depending on the bus
capacitances, longer spikes (e.g. 80 ns) could be used to see an appropriate effect. A spike
length of 120 ns is only necessary for very special setups and leads to an error in most cases.

Note: For this test the signal slope on SCL and SDA is important, because otherwise
it cannot be guaranteed that the Negative Tester can create the requested tim-
ings on the I2C-Bus. Due to this fact it is important to use a strong termination
on the I2C-Bus and to prevent long cables.

120

7.5 Slave

7.5 Slave

After the activation of the Slave Tab (refer to figure ??) the I2C Studio acts as a slave.
In this mode it can be used to test I2C masters.

To start/stop (activate/deactivate device) the slave mode use the menu item Negative Tester|Start
(F5) / Stop (F6) or the corresponding buttons in the toolbar. Figure ?? shows the Slave Tab
window.

Figure 7.20: Negative Tester - Slave Tab

It contains the following sub windows:

Testcase (??) - Define parameter data

Message (??) - Define message (buffer) data

Testcase Slave Tab

This tab page is used to set options for the slave mode. A description of the parameters
appears in the text field next to the parameter. Figure ?? shows the testcase slave tab.

Figure 7.21: Testcase Slave Tab

The following elements are available:

• Stretch To Time (ns): Set to stretch time for the low level of the clock

• NACK After Last Byte: Set to send NACK after receiving the next byte

121

7 Negative Tester

The Stretch To Time option specifies the time how long the slave stretches the low level of
the clock. If the master e.g. sends with 400 kHz, a value of 5000 ns will slow down the transfer
to 100 kHz. So this option can be useful to test, whether the I2C master’s stretching detection
works correctly.

Usually the slave receiver will accept more data bytes than have been specified. If the NACK
After Last Byte option has been enabled, the slave receiver sends a NACK after receiving the
next byte.

Testcase Slave Message Tab

This tab page is used to set the address, to enable the buffer data. The Expected Data will be
compared to the received data in the ??. To enable this function set the Check checkbox. The
Length field is used to set the length of the data to be compared.

Figure 7.22: Testcase Slave Message Tab

The following elements are available:

I2C Address Address, which the emulated I2C slave in the Negative Tester is listening to

Transmitter all settings regarding the transmitter function

Checkbox Enables/Disables the function to send message data for this address

Data Data that will be sent after a data request from this device

Receiver All settings regarding the receiver function

Checkbox Enables/Disables the function to receive message data for this address

Length Length of expected data to be compared to the received data

Expected Data The data to be received

Checkbox Enables/Disables the compare function

Data Data that will be compared to the received data

If the length is greater than the number of expected data, the test will fail. If the length
of received data is smaller, than the expected data the remaining bytes are ignored. If the
length of defined compare data is smaller than the defined length, the compare function will
be started at the first byte of defined data.

122

7.6 Results

Note: It is not possible to disable the Transmitter and the Receiver function.

7.6 Results

The log output (I2C-Bus messages) of the ?? and ?? operation is displayed at the bottom of the
??.

Therefore two tab pages are available:

• ??: Transmitted messages and their status

• ??: HTML Page with a more detailed data evaluation (visible after the send process)

Additional to that, the status bar shows the number of sent/received messages and their
status.

7.6.1 Results Tab

The Results Window shows the log output of the parsed I2C-Bus messages and the appro-
priate message status. The message data is displayed in a byte representation of the parsed
messages. These messages should be similar to the sent data which is presented in the graph-
ical view of the ??. Figure ?? shows this window.

Figure 7.23: Result Window

The columns have got the following meaning:

No Number (index) of the messages

Test Name Test name as defined by the user

Test Type Type of the testcase

Result Result/Status of the test execution. The icons have got the following meaning:

No Error
I2C address has not been acknowledged
One of the data bytes has not been acknowledged
Error

Speed Speed of the testcase

123

7 Negative Tester

I2C Normal-Speed
I2C High-Speed

Cond Shows whether the START and the STOP conditions have been sent one the I2C-Bus:

Only START Condition
START and STOP Condition
Only STOP Condition

Addr Field contains the address of the I2C slave, which has been addressed by the master.
The icons have got the following meaning:

7-bit I2C Address
10-bit I2C Address

Dir Direction of the message (Transmit/Receive)

Master Transmitter
Master Receiver
Master Transmitter/Receiver

Length Length of the message

Data Data of the message/error messages if an error occurred

7.6.2 Evaluation Tab

The Evaluation Window shows the log output with the I2C-Bus messages and the evaluation
of the transmission. This window is available when the run is complete, thus all tests have
finished. Figure ?? and ?? show two examples.

This viewer window is HTML-based and therefore provides a web-page like look. The report
consists of several files, which are connected by links. By clicking on the links it is possible to
navigate to the different files. The context menu item Back navigates back to the previously
viewed file.

For each testcase one report file is created. Figure ?? and ?? show the result for the ”Mas-
ter Speed” testcase.

The setup part of the report gives some details about the configuration. In this exam-
ple e.g. the Negative Tester and the tracer have both been configured to a termination of
”10.900 Ohm” and level thresholds of ”30/70%”. The tested I2C slave uses the I2C address
”0x50”.

The result part of the report provides web-page related links (marked as ’X’) to the follow-
ing files:

Input Pattern (SVG) Pattern loaded into the Negative Tester. This file uses the SVG vector
graphics format.

124

7.6 Results

VHDL Stimuli (VHD) Stimuli file for VHDL, which uses the same transitions and timings as
generated by the Negative Tester. This can be used to reproduce errors with a VHDL
simulator.

Trace Data (HTML) I2C messages, which have been traced on the I2C-Bus during the test
run. This file uses the HTML format.

ADC Data (SVG) Analogue shot of the I2C lines, which has been captured during the test
run. This file uses the SVG vector graphics format.

Note: The ADC Data option is only available, if the telos Tracer consists of an addi-
tional ADC license!

Trace/ADC Data (I2CL) Contains the same data as ”Trace Data (HTML)” and ”ADC Data
(SVG)”. The telos I2C Studio’s own log file format I2CL is used to store this data.

The last column of the table contains the results of the test run. The given example figure ??
shows the result OK in each row while in figure ?? the I2C device has failed to communicate
at a speed of 1 MHz.

The expected bitrate is shown in the table and additional to that, the approximate average
of the real bitrate is calculated and also given in an additional column. The real bitrate can
be equal or lower than the expected bitrate. If the deviation between the real bitrate and the
expected bitrate is greater than 10%, the average bitrate cell is marked in orange (see figure
??).

125

7 Negative Tester

Figure 7.24: Negative Tester Result - Master Speed Test - OK

126

7.6 Results

Figure 7.25: Negative Tester Result - Master Speed Test - Not OK

127

7 Negative Tester

7.7 Options

Figure ?? shows the ”Options” dialog for the Negative Tester.

Figure 7.26: Negative Tester Options

This dialog can be opened using the Negative Tester|Negative Tester Options menu item.

The following options can be configured within this dialog:

Report Directory During the test run a test report in the HTML format gets generated. This
parameter specifies the directory, into which this report gets written.

Select I2C Interface The telos Negative Tester interface itself works only as an I2C master or
I2C slave on the bus. To use the Negative Tester with the telos I2C Studio, a telos Tracii
XL or telos Tracii XL 2.0 interface with a valid tracer license is needed additionally. This
interface has to be connected to the same bus like the Negative Tester. In this case all
connected tracer interfaces are displayed in this menu and can be selected.

Master High Speed In I2C high-speed mode each message starts with a master code. This
option configures the master code to be used.

128

8 Scripting

8.1 Introduction

Figure 8.1: Script Window

The master and the tracer windows provide a powerful and convenient way to use the
I2C interfaces from telos. But sometimes users need a more flexible way to access the I2C
interfaces. Therefor I2C Studio offers the script window.

A new script window can be created using the New button, the menu item File|New or the
context menu item New from the workspace. In contrast to the other window types a script
window is never associated to a certain I2C interface. The user has to set up an interface
connection manually by calling the appropriate functions from I2C.NET API.

The script window consists of two text boxes. The upper text box allows to enter the script.
The lower text box receives error messages from the compiler and the output generated by
the script.

129

8 Scripting

The programming language supported by the script window is C#. Two frameworks are
available in the script window: .NET 4.0 and the I2C.NET API. The user can add additional
libraries, which are based on .NET 4.0.

The programming language C# is defined in ECMA-334, which can be downloaded from
here:

http://www.ecma-international.org/publications/standards/Ecma-334.

htm

The documentation for the I2C.NET API is part of the I2C Studio setup package. It can be
opened by the menu item Help|I2C Api Documentation.

I2C Studio comes with APIs for several other languages:

• C++

• .NET (e.g. C#, Visual Basic, and Delphi)

• C

• Labview

• NXP (formerly Philips Semiconductors) URT and URD

These APIs cannot be used directly in I2C Studio. Instead the programmer can use them
within the normal development environments.

8.2 Example

The following C# source code can be used to demonstrate the script window:

//
// CSharp Sample default.cs //
// telos Systementwicklung GmbH //
// http://www.telos.info //
//

using System;
using System.Collections.Generic;
using telos.I2cApi.DotNet;

namespace MyNamespace
{
public class MyClass
{

[STAThread]
public static void Main()
{

HardwareInfo hardware_info;
List<HardwareInfo> list_of_boards;

try
{

130

http://www.ecma-international.org/publications/standards/Ecma-334.htm
http://www.ecma-international.org/publications/standards/Ecma-334.htm

8.3 Configuration

using (Board board = new Board())
{
list_of_boards = board.ListOfBoards;

Console.WriteLine();
Console.WriteLine("{0} I2C interface(s) have been found:", list_of_boards.Count);
Console.WriteLine();

for (int i = 0; i < list_of_boards.Count; i++)
{

hardware_info = list_of_boards[i];

Console.WriteLine("I2C Interface {0}: Serial=\"0x{1:X4}\", Type=\"{2}\"",
i,
hardware_info.SerialNumber,
HardwareInfo.GetBoardTypeAsString(hardware_info.BoardType));

}

//
// TODO: Add your script code
//

}
}
catch (System.Exception ex)
{

Console.WriteLine("Error: " + ex.Message);
}

}
}

}

This program establishes a connection to the I2C scheduler and outputs a list of the I2C
interfaces, which are currently connected to the local PC.

After a script has been entered, it can be started using the Start button or the menu item
Script|Start.

While a script is running, its output is redirected to the output text box.

Note: More examples for several programming languages can be found in the ex-
amples folder of the installation path of I2C Studio (see section ?? for more
details).

8.3 Configuration

Like the other function windows the script window has got a configuration dialog, see figure
??. This dialog can be opened using the menu item Script|Script Options.

The dialog offers the following options:

Main Class Defines the name of the class, which contains the ”Main” method. If the source
code uses a namespace, this has to be specified, too. For the example the correct value
would be ”MyNamespace.MyClass”.

Referenced Assemblies Contains a list of .NET assemblies, which should be linked to the
executable. To communicate with the I2C interfaces the i2capi dotnet net40.dll
is needed.

131

8 Scripting

Figure 8.2: Script Window: Options Dialog

Assemblies can be added by using the Add button and removed by using the Remove
button.

8.4 Development Environment

While writing scripts like mentioned above, it could be helpful to use a more sophisticated
development environment like Microsoft Visual Studio. E.g. if step by step debugging is
necessary to be used while development. Therefore the given examples (see ??) written in
C#.NET, which can be found in the installation folder examples\dotnet\, provide a project
[*.csproj] file. This can be loaded into Microsoft Visual Studio to take advantage of this
development environment and to extend or vary the examples for individual purposes.

8.5 Advanced Examples

The setup package of I2C Studio contains some advanced examples, which demonstrate the
features of the I2C.NET API. They are located in the installation directory of I2C Studio in
examples\dotnet\.

The available examples are:

AdcExample.cs Demonstrates the usage of the module, which can create analog shots of the
I2C lines SCL and SDA.

InputTestpinsExample.cs Demonstrates the module, which can monitor the transitions of
the input testpins.

132

8.6 I2C.NET API (IRD)

MasterExample.cs Demonstrates how to send messages on the I2C-bus.

NegativeTesterExample.cs Demonstrates the Negative Tester interface.

PlugInExample.cs Demonstrate the writing of plug-ins for I2C Studio.

TracerExample.cs Demonstrate how to record the messages, which have been sent on the
I2C-bus.

8.6 I2C.NET API (IRD)

Communicating with I2C slaves from a script can be exhausting, because the device specific
high-level protocols must be implemented by hand using the data sheets of the devices.

To make life easier I2C Studio comes with the i2capi dotnet ird.dll assembly. It has
been created using the IRD compiler, which is described in section ??.

All IRD files of I2C Studio have been converted to .NET classes. These classes allow a
type-safe access to the registers and values of several widely used I2C slaves.

The following example demonstrates how to use one of theses classes to read out the Maxim
DS 1307, which is connected to the virtual I2C-bus of the Dummy I2C interface. The emulated
I2C slave uses address 0x68.

using System;
using System.Collections.Generic;
using System.Text;
using telos.I2cApi.DotNet;
using telos.Ird.Maxim;

namespace Test
{
class Program
{

static void Main(string[] args)
{
Board board;
Ds1307 clock;

board = new Board();
try
{

// open Dummy
board.Open (board.ListOfBoards[0]);

// create DS 1307 wrapper for address 0x68
clock = new Ds1307(board, new I2cAddress(0x68, false), "..\\ird");

// read out date/time every 500 ms
while(true)
{

Console.WriteLine ((clock.Year+2000).ToString().PadLeft(4) + "/" +
clock.Month.ToString("D2") + "/" +
clock.Date.ToString("D2") + " " +

133

8 Scripting

clock.Hours.ToString().PadLeft(2) + ":" +
clock.Minutes.ToString("D2") + ":" +
clock.Seconds.ToString("D2"));

System.Threading.Thread.Sleep(500);
}

}
finally
{
board.Dispose();

}
}

}
}

To execute this script in the script window it is necessary to add two .NET assemblies to the
options dialog: i2capi dotnet net40.dll and i2capi dotnet ird.dll.

The example reads out the data and time from the DS 1307 every 500 ms.

134

9 Tools

9.1 I2C Memory Slave

The I2C interface types telos Tracii XL and telos Tracii XL 2.0 can be configured to act as a
slave on the I2C-bus. This slave behaves like a standard I2C RAM with a capacity of 256
bytes. A description of the high-level I2C protocol used by such RAMs can be found e.g. in
the data-sheet of the NXP PCF8570 IC:

http://www.nxp.com/products/interface_and_connectivity/i2c/i2c_serial_

eeprom_ram/series/PCF8570.html

The slave in telos Tracii XL 2.0 supports 7-bit and 10-bit I2C addresses. It also supports the
I2C high-speed mode.

Figure 9.1: I2C Memory Slave

The configuration dialog (see figure ??) for the slave mode is opened by the menu item
Tools|I2C Memory Slave or by pressing the Slave button on the toolbar (see section ??).

Figure 9.2: Toolbar Slave Button

Within this dialog the following options can be configured:

Select I2C Interface This combo box contains a list of I2C interfaces, which can be used as
I2C slaves. The configuration shown under ”Slave Configuration” refers to the I2C
interface selected in this combo box.

135

http://www.nxp.com/products/interface_and_connectivity/i2c/i2c_serial_eeprom_ram/series/PCF8570.html
http://www.nxp.com/products/interface_and_connectivity/i2c/i2c_serial_eeprom_ram/series/PCF8570.html

9 Tools

Enable If this check box is set, the slave emulation is running.

All I2C Addresses If this check box is set, the emulated RAM listens on all possible 7-bit or
10-bit I2C addresses.

I2C Address Specifies the I2C slave address of the emulated RAM. All I2C requests sent on
the I2C-bus to this address will be answered by the I2C interface.

Memory Size Configures the size of the emulated I2C slave.

Auto Increment Enables/disables auto incrementing of the address pointer in the emulated
I2C slave.

Timeout Configures the timeout of the emulated I2C slave.

Data Gets/sets the data of the emulated RAM.

Note: telos Tracii XL2.0 can operate as I2C master and I2C slave in parallel. While
the RAM slave emulation is running, an I2C message can be sent by master
from the same I2C interface.

If the user has enabled the slave using the configuration dialog, it stays enabled while I2C
Studio is running. Even closing the configuration dialog will not stop the slave emulation.
An enabled slave will be notified by a green slave button (see figure ??).

Figure 9.3: Toolbar Slave Button enabled

9.2 JEDEC SPD

There is an important field, where I2C EEPROMs are used in the PC industry: memory mod-
ules. All memory modules sold today contain an EEPROM, which describes the timing pa-
rameters needed by the module so that the user must not enter these parameters manually.
The JEDEC standards and specifications can be downloaded from the JEDEC WWW page at:

http://www.jedec.org/

Figure ?? shows the dialog, which has been opened by clicking onto the menu item Tools|JEDEC
SPD.

There are Read and Write buttons to exchange the configuration with an appropriate EEP-
ROM connected to the I2C-bus of the selected I2C interface. The I2C address of the EEPROM
is not fix. The user has to specify the I2C address he wants to exchange the data with.

Moreover there are Import and Export buttons, which export the content as an image to a
file and reimport it.

All other fields of the dialog serve the modification of the content to be stored in the JEDEC
image.

136

http://www.jedec.org/

9.3 SMBus Address Resolution Protocol

Figure 9.4: JEDEC SPD

9.3 SMBus Address Resolution Protocol

The SMBus specification version 2.0 describes in section 5.6 an ”Address Resolution Protocol”
(ARP). Using this protocol a SMBus ARP master can determine the slave address of SMBus
ARP slaves, which are using a fix address. Furthermore the master can assign an address to
slaves using dynamic addresses during runtime. With the help of this protocol the master can
also get some information about the slaves, e.g. the vendor and device IDs.

I2C Studio contains a SMBus ARP dialog, which implements an ARP master. This dialog,
opened by the menu item Tools|SMB ARP, is shown in figure ??.

Normally the ARP process does not need any interactions of the user. It is simply started
by clicking onto the Start button. Afterwards the ”Devices” table contains a list of all found
devices, which support SMBus ARP. The first column of the table contains the ”Unique Device
Identifier” (UDID), the second the I2C address used by this device.

The UDID contains some information about the device. An interpreted view of this value
can be viewed by selecting a row in the table and clicking onto the Device Info button. A new
dialog opens, which is shown in figure ??.

When developing a new SMBus slave device, it can be useful to execute the ARP process
step by step. For this purpose there is an advanced ARP dialog, which can be opened using
the Advanced button. The advanced ARP dialog is shown in figure ??.

The meaning of the ARP commands, which can be triggered with the buttons of this dialog,
are described in the SMBus specification.

137

9 Tools

Figure 9.5: SMBus ARP Dialog

Figure 9.6: SMBus ARP Dialog: Device Info

Note: At the moment there are not a lot of SMBus devices on the market supporting
SMBus ARP. Even these devices does not work correctly, because their algo-
rithm to calculate the ”Packet Error Checking” (PEC) does not conform to the
SMBus specification.

Besides the SMBus ARP dialog I2C Studio also supports ARP in the tracer function win-
dow. Using a supplied IRD file, which must be registered to the I2C address 0x61, the ARP
communication between the SMBus ARP master and the ARP slaves can be viewed.

9.4 IRD Compiler

IRD files are used by I2C Studio to describe the registers and values of an I2C device. This
file format is based on XML. I2C Studio comes with a lot of ready to use IRD files for widely
used I2C slaves. The user has also the possibility to write its own IRD files.

138

9.4 IRD Compiler

Figure 9.7: SMBus ARP Dialog: Advanced

Figure 9.8: IRD Compiler Dialog

Using the IRD compiler it is possible to convert an IRD file to a C# source code file. Such a
source code file contains one class, which offers a type-safe access to the registers/values of a
device via the I2C-bus.

Using such a class communicating with an I2C slave from a script or one’s own .NET pro-
gram becomes a lot of easier. It is no longer necessary to calculate the data bytes to be sent to
the I2C slave from its data-sheet. Instead, the developer can simply assign the needed value
to a property of the created class.

This dialog offers the following options:

Input File Contains the name of the IRD file, which should be converted.

Output File The C# source code file gets written to a file with this name.

Create DLL If this box is checked, the C# source code gets compiled to a .NET assembly DLL,
which can be used from all programming languages which come with .NET support.

The conversion is started by clicking onto the OK button.

139

9 Tools

The .NET assembly i2capi dotnet ird.dll contains the classes for all IRD files which
come with I2C Studio. It can be found in the installation directory of I2C Studio in the subdi-
rectory lib\.

9.5 IRD Composer

Figure 9.9: IRD Composer Dialog

I2C Studio comes with a large collection of IRD files for all common I2C devices. However,
there will be always I2C devices for which there are no ready-to-use IRD files. In such a
situation the user has two possibilities for writing his own IRD files: he can write the IRD
files, which are in fact XML files, by hand using the ”IRD User Manual” and a text editor. Or
he can use the IRD Composer to create the IRD files.

Figure ?? shows the IRD Composer, which can be opened using the menu item Tools|IRD
Composer. This dialog offers a graphical user interface for creating IRD files.

It consists of a collection of tab pages, which contain input masks for defining general in-
formation, registers, types, and values. The exact meanings of all these fields are not covered
by this manual. They are described in the ”IRD User Manual”.

After all information for one I2C device has been entered, the Save button can be used to
create an IRD file. This file uses, like all IRD files created by the user, the suffix *.xml instead
of *.ird.

140

9.5 IRD Composer

The Load button loads an IRD file, which has been created by the user, into the dialog. It is
not possible to load IRD files into this dialog, which are part of I2C Studio.

141

10 License & Support

10.1 License Management

10.1.1 Service Contracts

Each I2C interface bought from telos has got a service contract. This service contract is valid
for 12 months. During this time the user gets free software updates of I2C Studio and free
support.

To benefit from new features in future release or make use of the support after these 12
months, the service contract can be extended or renewed. To get prices please visit the telos
home page or get in contact with our sales department:

http://www.telos.info/shop/service-contracts/

Service contract extensions are delivered in the form of registration codes.

10.1.2 Upgrade Features

Some I2C interfaces like e.g. telos Tracii XL 2.0 have got several features, which can be bought
separately. If the user e.g. owns a basic telos Tracii XL 2.0, he can buy the ”Tracer Option” at
a later time.

To get this new feature, it is not necessary to send the I2C interface back to telos. Instead
the user simply gets a registration code, which will enable the feature in the I2C interface.

10.1.3 Registration Dialog

The License Manager has got two purposes. It can be used to view the currently available
features and the service contracts of an I2C interface. Furthermore the user can enter registra-
tion codes, which have be purchased from telos, to extend the service contracts or to enable
new features.

The file menu item File|Registration is used to open this dialog. The dialog can be divided
into the following parts:

Select Board Contains a list of all I2C interfaces, which are currently visible for I2C Studio.
The user has to select the I2C interface, whose licenses should be viewed or modified.

Licenses This table contains the licenses, which are currently stored in the selected I2C in-
terface:

Status Indicates, whether this feature can be used with this version of I2C Studio.

license available
license not available

143

http://www.telos.info/shop/service-contracts/

10 License & Support

Figure 10.1: License Manager

License Name of the feature.

Service Contract Until This feature can be used with all I2C Studio versions, which
have been release not later than this date. The I2C interface shown in figure ?? can
be used with all I2C Studio versions released not later than 2008/09/30.

Required License Shows the date, when the currently running version of I2C Studio has
been released.

Registration Code One or more registration codes can be entered in this field to enable new
features or to renew the service contracts. When a registration code is set using the Set
button, the updated license information is stored in the I2C interface itself. So after-
wards the registration code is no longer needed.

Note: If the user buys some additional features or a service contract extension to-
gether with the basic hardware, all needed license information is already
stored in the I2C interface. So the user does not have to enter any registration
codes.

144

10.2 Support

10.2 Support

telos offers support for its products by e-mail or phone. We do our best to solve any problem
within one working day.

To get into contact with the telos product support:

telos Systementwicklung GmbH
Kaiser-Wilhelm-Strasse 93
20355 Hamburg
Germany

Phone: +49 (0)40 450173 61
Fax: +49 (0)40 450173 99
E-Mail: tsupport@telos.de
Web: www.telos.info

Figure 10.2: About Dialog

Please always add the type and the serial number of your I2C interface to your e-mails. The
easiest way to get this information is to use the ”About” dialog, which can be opened using
Help|About. With the Copy to Clipboard button all needed information is copied to the MS
Windows clipboard. Alternatively the Submit button can be used to mail all this information
directly to the product support.

145

11 Redistribution

11.1 Overview

Sometimes a user wants to distribute an application, which has been written using one of the
I2C APIs, to other users. Therefore it is necessary to redistribute the infrastructure to these
users, which is needed to communicate with the I2C interfaces from telos.

If the redistribution of the complete I2C Studio is not the desired solution, it is possible to
include only the really needed files into the user’s own setup package. telos does not offer
any support for such setups.

Normally three components are needed: the driver, the I2C scheduler, and the API itself.

11.2 Driver

The driver can be found in the installation directory:

<install dir>\drivers

If the tools, which are used to create the setup package, do not support the installation
of drivers by itself, telos recommends to use the ”Driver Install Frameworks (DIFx)” from
Microsoft, which is part of the WDK.

11.3 I2C Scheduler

The I2C Scheduler is located in the following executable:

<install dir>\bin\tracii scheduler.exe

This executable must be registered as Windows Service during the installation of the setup
package. Before a setup package gets deinstalled the Windows Service must be deregistered.

The I2C scheduler offers some command line options to register and deregister itself:

tracii_scheduler.exe <option>

/install_2000 register the I2C scheduler (>= Win2k)
/remove_2000 deregister the I2C scheduler (>= Win2k)

After a successful registration the I2C Scheduler can be found in the Services dialog of the
Administrative Tools (see figure ??).

11.4 API

Depending on the used API different files must be included into the user’s own setup pack-
age.

147

11 Redistribution

Figure 11.1: Control Panel\Administrative Tools\Services

11.4.1 C

The I2C.C API is located in the following files:

<windows dir>\SysWOW64\i2capi c.dll
<windows dir>\System32\i2capi c.dll

11.4.2 C++

As the I2C.C++ API gets linked statically to the user’s application; no additional files must be
included into the setup package.

11.4.3 .NET

The I2C.NET API can be found in the following directory:

<install dir>\lib\dotnet

There are two subdirectories, which contain the 32-bit and the 64-bit versions of the I2C.NET
assembly. The interface of both assemblies is compatible.

11.4.4 Java

The JAR file and the DLLs of the I2C.Java API can be found in the following directory:

<install dir>\java

148

11.4 API

11.4.5 Labview

For the I2C.Labview API some more files are needed. At first two .NET assemblies are needed:
the I2C.NET API and i2capi dotnet labview.dll. The second assembly can be found in
the Assembly Cache of Windows, which can be accessed using the following virtual directo-
ries:

<windows dir>\assembly (.NET 2.0)
<windows dir>\Microsoft.NET\assembly\GAC MSIL\i2capi dotnet labview\<version>
(.NET 4.0)

In addition to these assemblies it is necessary to add all used I2C VIs to the Labview project
or setup package. These VIs can be found in the following directory:

<install dir>\labview

The VIs support Labview starting with version 2014. Older versions for Labview 8.2 are
still available from our support.

If a package or project dependency cannot be resolved on loading then just point the envi-
ronment to the proper directory.

There are two sample Labview projects delivered with I2C Studio for an I2C Master Trans-
mitter and Tracer. They can be found in <install dir>\examples\labview.

The Labview projects provide predefined build targets which require write access to the
<install dir>\examples\labview\Example[Master|Tracer] directory. If the build
process does not complete because of missing file permissions the directories <install
dir>\examples\labview and <install dir>\labview can be copied to a different lo-
cation with proper file permissions. This probably requires the resolution of missing depen-
dencies.

149

	1 Terms
	2 Introduction
	2.1 Disclaimer
	2.2 Product Outline and Purpose
	2.2.1 I2C Studio
	2.2.2 I2C Framework
	2.2.3 I2C Flasher

	3 Installation
	3.1 System Prerequisites
	3.2 Software Installation
	3.3 Driver Installation
	3.4 Mac OS X

	4 Getting Started
	4.1 I2C Studio Overview
	4.2 Menu and Toolbar
	4.2.1 Permanent Menu
	4.2.2 Dynamic Menu
	4.2.3 Toolbar

	4.3 Status Bar
	4.4 Function Windows
	4.5 Workspace
	4.6 I2C Scheduler
	4.7 Hardware Options
	4.8 I2C Interface "Dummy"
	4.9 First Steps Example

	5 Tracer
	5.1 Introduction
	5.2 Quick Start
	5.3 Views
	5.4 Acquire I2C Data
	5.5 Configuration
	5.5.1 Tracer Options
	5.5.2 IRD & Plug-In Manager

	5.6 Analog Mode
	5.6.1 Introduction
	5.6.2 Acquire Analog Data
	5.6.3 Configuration

	5.7 Time View
	5.7.1 Frame Data
	5.7.2 Analog Data
	5.7.3 Digital Input Lines
	5.7.4 Navigation
	5.7.5 Zoom
	5.7.6 Measuring
	5.7.7 Export / Copy to Clipboard

	5.8 Message View
	5.8.1 Navigation
	5.8.2 Raw Mode
	5.8.3 Register Mode
	5.8.4 Value Mode
	5.8.5 Export / Copy to Clipboard

	5.9 Live View
	5.10 Statistic View
	5.10.1 Statistic
	5.10.2 Export / Copy to Clipboard

	5.11 Find
	5.11.1 Find Window
	5.11.2 Rules

	5.12 Storage of Trace Data
	5.13 Printing
	5.13.1 Printer Configuration
	5.13.2 Data Selection

	5.14 Plug-Ins

	6 Master
	6.1 Introduction
	6.2 Quick Start
	6.3 Creation of Messages
	6.3.1 Command Tree
	6.3.2 I2C
	6.3.3 SMBus
	6.3.4 IRD
	6.3.5 Pause
	6.3.6 Input Testpins
	6.3.7 Output Testpins

	6.4 Results
	6.4.1 I2C
	6.4.2 SMBus
	6.4.3 IRD
	6.4.4 Pause
	6.4.5 Input Testpins
	6.4.6 Output Testpins

	6.5 Configuration
	6.5.1 Master Options
	6.5.2 IRD & Plug-In Manager

	7 Negative Tester
	7.1 Introduction
	7.2 Quick Start
	7.3 Negative Tester Window
	7.4 Master
	7.4.1 Testcase Selection Window
	7.4.2 Testcase Window
	7.4.3 Testcase Parameter Window
	7.4.4 Message Data Window
	7.4.5 Message Timing
	7.4.6 Master Testcase Types

	7.5 Slave
	7.6 Results
	7.6.1 Results Tab
	7.6.2 Evaluation Tab

	7.7 Options

	8 Scripting
	8.1 Introduction
	8.2 Example
	8.3 Configuration
	8.4 Development Environment
	8.5 Advanced Examples
	8.6 I2C.NET API (IRD)

	9 Tools
	9.1 I2C Memory Slave
	9.2 JEDEC SPD
	9.3 SMBus Address Resolution Protocol
	9.4 IRD Compiler
	9.5 IRD Composer

	10 License & Support
	10.1 License Management
	10.1.1 Service Contracts
	10.1.2 Upgrade Features
	10.1.3 Registration Dialog

	10.2 Support

	11 Redistribution
	11.1 Overview
	11.2 Driver
	11.3 I2C Scheduler
	11.4 API
	11.4.1 C
	11.4.2 C++
	11.4.3 .NET
	11.4.4 Java
	11.4.5 Labview

